Anomaly Matching and Symmetry-protected Criticality in 1d Quantum Many-body Systems

Chang-Tse Hsieh

Kavli Institute for the Physics and Mathematics of the Universe & Institute for Solid States Physics, the Univ. of Tokyo

> TOPMAT, IPhT, CEA, Saclay June 13, 2018

Collaborators

Shinsei Ryu (Chicago)

Gil Young Cho (POSTECH)

G. Y. Cho*, C.-T. Hsieh*, and S. Ryu, PRB 96, 195105 (2017); arXiv:1705.03892

Masaki Oshikawa (ISSP, U of Tokyo)

Yuan Yao (ISSP, U of Tokyo)

Y. Yao*, C.-T. Hsieh*, and M. Oshikawa, arXiv:1805.06885

*Equal contributions

Collaborators

Shinsei Ryu (Chicago)

Gil Young Cho (POSTECH)

G. Y. Cho*, C.-T. Hsieh*, and S. Ryu, PRB 96, 195105 (2017); arXiv:1705.03892

Masaki Oshikawa (ISSP, U of Tokyo)

Yuan Yao (ISSP, U of Tokyo)

Y. Yao^{*}, **C.-T. Hsieh**^{*}, and M. Oshikawa, arXiv:1805.06885 *Equal contributions

Outline

Introduction

• Example 1: 1d charged fermion systems

• Example 2: 1d SU(N) spin systems

Conclusion

Outline

Introduction

• Example 1: 1d charged fermion systems

• Example 2: 1d SU(N) spin systems

Conclusion

- Identifying the "phase" of a generic many-body system is an important but, in general, difficult problem
- Quite often, symmetries play an essential role in such a problem
- Various classes of phases of matter:
- Conventional Landau-Ginzburg-Wilson symm-breaking paradigm

Topological phases: Symm-protected top. (SPT) phases [Hasan-Kane 10; Qi-Zhang 11; Senthil 15; Chiu-Teo-Schnyder-Ryu 16; Witten 16; ...]

- Phases associated with "ingappability" (in 1d):
- Defined regarding "whether a system with symm *can have* or *can be* gapped into a trivial – unique and symmetric – gapped ground state"

 $H_0 + \alpha H_{\text{pert}}$

trivial ⇔ gappable

nontrivial ⇔ ingappable

• Ingappability (stability) of edge states of 2d SPT phases has been well studied, e.g. *helical edge states* of 2d QSHE

$$H_{\text{edge}} = \int dx \Psi^{\dagger}(x) (-iv_F \partial_x) \sigma_z \Psi(x)$$
$$\Psi(x) = (\psi_R(x), \psi_L(x))^T$$

- Phases associated with "ingappability" (in 1d):
- Defined regarding "whether a system with symm *can have* or *can be gapped into* a trivial unique and symmetric gapped ground state"

 $H_0 + \alpha H_{\text{pert}}$

trivial ⇔ gappable

nontrivial ⇔ ingappable

• Ingappability (stability) of edge states of 2d SPT phases has been well studied, e.g. *helical edge states* of 2d QSHE

$$H_{edge} = \int dx \Psi^{\dagger}(x) (-iv_F \partial_x) \sigma_z \Psi(x)$$

$$I_{fw} = g_1 \psi_R^{\dagger} \psi_R \psi_L^{\dagger} \psi_L$$
gapless
$$I_{Umkl} = g_2 \ e^{-i4k_F x} \psi_R^{\dagger}(x) \psi_R^{\dagger}(x+a)$$

$$SSB \ of \ TR \times \psi_L(x+a) \psi_L(x) + h.c$$

$$Ingappable \ (stable)!$$
[Wu-Bernevig-Zhang 06; Xu-Moore 06]

- Phases associated with "ingappability" (in 1d):
- Defined regarding "whether a system with symm can have or can be gapped into a trivial – unique and symmetric – gapped ground state"

 $H_0 + \alpha H_{\text{pert}}$

trivial ⇔ gappable

nontrivial ⇔ ingappable

• Purely 1d (lattice) spin systems:

 $H_{\text{HAF}}^{s=1} = \sum_{i} S_{i} \cdot S_{i+1}$ gapped $H_{\text{BB}}^{s=1} = \sum_{i} \left[\cos \theta (S_{i} \cdot S_{i+1}) + \sin \theta (S_{i} \cdot S_{i+1})^{2} \right]$ spin-1: gappable

- Phases associated with "ingappability" (in 1d):
- Defined regarding "whether a system with symm can have or can be gapped into a trivial – unique and symmetric – gapped ground state"

 $H_0 + \alpha H_{\text{pert}}$

trivial ⇔ gappable

nontrivial ⇔ ingappable

• Purely 1d (lattice) spin systems:

$$H_{\text{HAF}}^{s=1} = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1}$$

$$H_{\text{BB}}^{s=1} = \sum_{i} \left[\cos \theta(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}) + \sin \theta(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2} \right]$$

$$H_{\text{BB}}^{s=1/2} = \sum_{i} \left[\cos \theta(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1}) + \sin \theta(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2} \right]$$

$$H_{\text{MG}}^{s=1/2} = \sum_{i} \left[\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \frac{1}{2} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2} + \frac{3}{8} \right]$$

$$\text{spin-1: gappable}$$

$$\text{spin-1/2: (seems) ingappable}$$

- Phases associated with "ingappability" (in 1d):
- Defined regarding "whether a system with symm *can have* or *can be gapped into* a trivial unique and symmetric gapped ground state"

 $H_0 + \alpha H_{\text{pert}}$

trivial ⇔ gappable

nontrivial ⇔ ingappable

 $\left(\frac{3}{8}\right)$

• Purely 1d (lattice) spin systems:

$$H_{\text{HAF}}^{s=1} = \sum_{i} S_{i} \cdot S_{i+1}$$

$$gapped = \sum_{i} \left[\cos \theta (S_{i} \cdot S_{i+1}) + \sin \theta (S_{i} \cdot S_{i+1})^{2} \right]$$

$$H_{\text{BB}}^{s=1/2} = \sum_{i} \left[\cos \theta (S_{i} \cdot S_{i+1}) + \sin \theta (S_{i} \cdot S_{i+1})^{2} \right]$$

$$H_{\text{BB}}^{s=1/2} = \sum_{i} \left[\left(S_{i} \cdot S_{i+1} + \frac{1}{2} S_{i} \cdot S_{i+2} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i+2} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{i} \cdot S_{i} \cdot S_{i} + \frac{1}{2} S_{i} \cdot S_{$$

Implied by the Lieb-Schultz-Mattis (LSM) theorem

• The *LSM theorem* for 1d SU(2) spin chains: [Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique gapped GS if the spin per site is half-integral and if the lattice transl symm and SO(3) symm are strictly imposed.

- Q1: Given any 1d lattice model w/ both translation and some on-site symm (G^{site} × Z^{trans}), e.g. Hubbard or Heisenberg models, could we determine, basing on the symm and microscopic d.o.f. of the model, whether the system is ingappable?
- Q2: If so, could we have further constraints on the (possible) low-energy phases of this model?

> In this talk, we will answer these questions, focusing on the cases of $G^{site} = U(1)$ and PSU(N).

Our approach

• Our approach is based on the idea of ('t Hooft) anomaly matching ['t Hooft et al. 80], which enables us to obtain some fundamental constraints on the phase diagrams.

Our approach (cont.)

The mixed anomaly – and thus the LSM index – is a top. quantity indep. of inter-particle interactions (at either UV or IR).
>Because anomaly is "preserved" under RG ('t Hooft anomaly

matching condition).

- At the lattice scale, the LSM index only depends on a quantity associated with G^{site} of the d.o.f. within a unit cell.
- Let's see the examples $G^{site} = U(1)$ and PSU(N) in the following discussion.

Outline

• Introduction

• Example 1: 1d charged fermion systems

• Example 2: 1d SU(N) spin systems

Conclusion

• The *LSM theorem* for 1d electron systems: [Oshikawa-Yamanaka-Affleck (96, 97); Oshikawa (00); etc]

A 1d electron-lattice system cannot be a trivial insulator if the filling per unit cell is fractional and if the lattice transl symm and charge conservation are strictly imposed.

1d electron system with translation symmetry

• A simple model: tight-binding model of 1d spinless fermions

$$H = -t \sum_{x}^{L} (c_x^{\dagger} c_{x+1} + h.c.) - \mu \sum_{x}^{L} c_x^{\dagger} c_x$$

$$U(1)_Q : \quad c_x \to e^{i\phi} c_x,$$

$$\mathbb{Z}_{trans} : \quad c_x \to c_{x+1}.$$

e⁻

1d electron system with translation symmetry

• The continuum IR limit of the theory:

$$c_x \approx \psi_R(x)e^{ik_Fx} + \psi_L(x)e^{-ik_Fx}$$
$$H = \int dx \ \Psi^{\dagger}(x)(-iv_F\partial_x)\sigma_z\Psi(x) \qquad \Psi(x) = (\psi_R(x),\psi_L(x))^T$$

Symmetry in the low-energy theory:

$$U(1)_Q: \quad \Psi(x) \to e^{i\phi}\Psi(x),$$
$$\mathbb{Z}_{trans}: \quad \Psi(x) \to e^{ik_F\sigma^z}\Psi(x)$$

- Taking v = 1/2, we have a local and internal symm $U(1)_Q \times Z_2$.
- For generic v, we have $U(1)_Q \times Z$

Anomalies in the low-energy theory

• There is a "discrete" **axial/chiral/mixed anomaly** in the Dirac theory

$$H = \int dx \ \Psi^{\dagger}(x)(-iv_F\partial_x)\sigma_z\Psi(x) \qquad \begin{array}{c} U(1):\Psi \to e^{i\phi}\Psi & \text{vector} \\ \mathbb{Z}:\Psi \to e^{ik_F\sigma_z}\Psi = e^{i\pi\nu\sigma_z}\Psi & \text{axial} \end{array}$$

• That is, the part. func. in the presence of a U(1) field is in general not invariant under the axial transf [Cho-Hsieh-Ryu 17]

$$Z(A_{U(1)}) \xrightarrow{\text{axial}} e^{2\pi i \boldsymbol{\nu} \times \text{integer}} Z(A_{U(1)})$$

=> axial anomaly is characterized by ν , the filling per unit cell!

Implication of the mixed anomaly

IR: If v ≠ integer, the low-energy theory is *anomalous*; it must be either gapless or, when perturbed by (symmetric) interactions, gapped with spontaneous symm breaking.

• UV (lattice): If the filling per unit cell is not integral, the system does not allow a unique gapped ground state; it must be in a gapless phase or a gapped phase breaking the transl symm.

≻This is nothing but the LSM theorem for an electron system!

Implication of the mixed anomaly

• For example, a half-filled spinless ferm ($v = \frac{1}{2}$) is ingappable

e.g.
$$-t \sum_{x} (c_x^{\dagger} c_{x+1} + h.c.) + U \sum_{x} n_x n_{x+1}$$

(U/t >>1, the system is gapped w/ SSB of transl)

while two half-filled (spinful) ferm ($v_{tot} = 1$) is gappable

e.g.
$$-t \sum_{x} (c_{\uparrow,x}^{\dagger} c_{\uparrow,x+1} + c_{\downarrow,x}^{\dagger} c_{\downarrow,x+1}) + V \sum_{x} c_{\uparrow,x}^{\dagger} c_{\downarrow,x} + h.c.$$

(V/t >>1, the system is **trivially** gapped)

LSM indices of 1d charged fermion systems with translational symmetry

• By anomaly matching, one can identify the LSM index of a generic 1d charged fermion system [Cho-Hsieh-Ryu 17]

- Ingappability for more general systems (Tomonaga–Luttinger liquid) can be checked by bosonization [Cho-Hsieh-Ryu (17)]
- In summary, we have the LSM physics for 1d fermionic systems from the perspective of anomaly matching:

A 1d electron-lattice system cannot be a trivial insulator if the filling per unit cell is fractional and if the lattice transl symm and charge conservation are strictly imposed.

• This agrees with previous works by Oshikawa-Yamanaka-Affleck (96, 97), Oshikawa (00), etc.

Outline

• Introduction

• Example 1: 1d charged fermion systems

• Example 2: 1d SU(N) spin systems

Conclusion

1d spin chain with translation symmetry

• The *LSM theorem* for 1d *SU*(2) spin chains: [Lieb-Schultz-Mattis (61); Affleck-Lieb (86); etc]

A 1d SU(2) antiferromagnetic spin chain cannot have a unique gapped GS if the spin per site is half-integral and if the lattice transl symm and SO(3) symm are strictly imposed.

1d spin chain with translation symmetry

 A generalization to the case of SU(2N) spin chain was also known: [Affleck-Lieb (86)]

A 1d SU(2N) antiferromagnetic spin chain cannot have a unique gapped GS if the Young tableau rep per site has an odd number of boxes and if the lattice transl symm and PSU(2N) symm are strictly imposed.

1d spin chain with translation symmetry

- How about for an SU(N) chain with a generic Young-tableau (YT) rep λ per site and with both PSU(N) and transl Z^{trans} symm?
- > A typical example is the (generalized) HAF model

• We will answer this question, again, by the anomaly matching argument

LSM indices of 1d *SU*(*N*) spin systems with translational symmetry

• Let's identify the LSM index for a 1d SU(N) lattice model from the form of the mixed anomaly of $PSU(N) \times \mathbb{Z}$.

[Yao-Hsieh-Oshikawa 18]

Check with simple examples:

• N = 2: For a system w/ spin s per unit cell we have

• N = even: For a system w/ SU(N) spin λ w/ an odd # of boxes

$$\mathcal{I}_N \neq 0 \mod N$$

>Agree with the LSMA theorem!

- Q1: Given any 1d lattice model w/ both translation and some on-site symm (G^{site} × Z^{trans}), e.g. Hubbard or Heisenberg models, could we determine, basing on the symm and microscopic d.o.f. of the model, whether the system is ingappable?
- **Q2**: If so, could we have further constraints on the (possible) low-energy phases of this model?

- Q1: Given any 1d lattice model w/ both translation and some on-site symm ($G^{site} \times \mathbb{Z}^{trans}$), e.g. Hubbard or Heisenberg models, could we determine, basing on the symm and microscopic d.o.f. of the model, whether the system is ingappable?
- Q2: If so, could we have further constraints on the (possible) low-energy phases of this model?

Constraints on the low-energy phases

• The value of the LSM index I_N can be used to further **constrain** the *GSD* or the *possible universality class* when the system is in a gapped or a critical phase, respectively:

►GSD of a gapped phase:
$$GSD \in \frac{N}{\gcd(\mathcal{I}_N, N)} \mathbb{N}$$
 (1)

 $>SU(N)_k$ WZW CFT with transl symm $g \to e^{2\pi i m/N}g$:

$$\mathcal{I}_N = km \mod N \tag{2}$$

=> For N=2, (2) agrees with Furuya-Oshikawa 15

Anomalies in SU(N) WZW theories

• The most natural univ classes of a critical *SU*(*N*) spin model is the *SU*(*N*) WZW theories

$$kI(g) = \frac{k}{8\pi} \int_{M_2} dt dx \operatorname{Tr} \left(\partial_{\mu} g^{-1} \partial^{\mu} g \right) + k \Gamma_{WZ}$$

level
vector $PSU(N) : g \to wgw^{-1}, w \in SU(N)$
axial $\mathbb{Z}_n(\operatorname{trans}) : g \to e^{2\pi i m/N}g, m \in \{0, 1, ..., N-1\}$
 $n = N/\operatorname{gcd}(m, N)$

• Mixed anomaly of the $PSU(N) \times \mathbb{Z}_n$ symm [Yao-Hsieh-Oshikawa 18]:

$$Z(A_{PSU(N)}) \xrightarrow{\text{axial}} e^{2\pi i \frac{km}{N} \times \text{integer}} Z(A_{PSU(N)})$$

characterized by km/N , or $km \mod N$

• Our prediction agrees with known examples in previous studies of *SU*(*N*) models.

-	Model	YT	\mathcal{I}_N	GSD	IR CFT; m	Mixed anomaly
Greiter et al. 07	SU(3) trimer model [43]		$1 \mod 3$	$3\in 3\mathbb{N}$	-	-
	SU(3) 10 -VBS model [43]		$0 \mod 3$	$1\in 1\mathbb{N}$	-	-
Greiter-Rahel 07	<i>SU</i> (6) 70 -VBS model [44]		$3 \mod 6$	$2\in 2\mathbb{N}$	-	-
Takhtajan; Babujian 8	2 S-3/2 TB model[45, 46]		$1 \mod 2$	-	$SU(2)_3$ WZW; 1	$1 \mod 2$
Andrei-Johannesson 8 Johanness 86	$\mathcal{H}^{[3,2]}$ AJ model[47, 48]		$2 \mod 3$	-	$SU(3)_2$ WZW; 1	$2 \mod 3$
Rachel et al. 09	SU(3) 1×2-YT HAF[49, 50]		$2 \mod 3$	-	$SU(3)_1$ WZW; 2	$2 \mod 3$
Dufour et al. 15	$SU(9) 2 \times 1$ -YT HAF[51]		$2 \mod 9$	-	$SU(9)_1$ WZW; 2	$2 \mod 9$
Lecheminant 15	SU(3) 2-leg ladder [52]		$2 \mod 3$	-	$SU(3)_1$ WZW; 2	2 mod 3

Y. Yao, C.-T. Hsieh, and M. Oshikawa, arXiv:1805.06885

In summary, if a spin model with an exact SU(N) spin-rotation and transl symm has a **nontrivial LSM index**, i.e., the total umber of Young-tableau boxes per unit cell is not divisible by N, the system must have either

- degenerate gapped ground states, with the multiplicity (1), or
- gapless excitations, which is symm protected/respected. If the low-energy EFT is given by an *SU*(*N*) WZW theory, its level is constrained by (2).

Symmetry enlargement

 An SU(N) model might have an SU(N')_{k'} WZW critical theory w/N' > N. Such a critical theory is constrained by the LSM index as

$$\mathcal{I}_N \cdot \frac{N'}{\gcd(N', k'm')} = 0 \mod N$$

• For example, an *SU*(2) spin chain with a half-integer spin per unit cell does *not* admit an *SU*(*N*') WZW critical theory for any odd integer *N*'

This explains SU(3) symm are only found in integer-spin models [Uimin 70; Lai 74; Sutherland 75; Chen *et al.*15]

Critical spin-1 chain: SU(3) symm is enhanced in the lattice model Critical spin-2 chain: SU(3) symm emerges only in the thermodynamic limit

Symmetry enlargement

• More on the Uimin-Lai-Sutherland model:

$$H_{\text{ULM}} = \sum_{i} S_{i} \cdot S_{i+1} + (S_{i} \cdot S_{i+1})^{2} \propto \sum_{i} \sum_{A=1}^{8} T_{i}^{A} T_{i+1}^{A}$$

$$SU(2) \text{ spin-1} \qquad SU(3) \text{ "spin" in the fund rep}$$

$$\bigcup_{i \in I_{2}} O \mod 2 \qquad \text{a "finer" index: } I_{3} = 1 \mod 3$$

0

Both indices are consistent with the existence of the SU(3)₁ WZW critical theory!

Outline

• Introduction

• Example 1: 1d charged fermion systems

• Example 2: 1d SU(N) spin systems

Conclusion

Conclusion

• We apply the idea of ('t Hooft) anomaly matching to study 1d condensed matter systems – many-body systems in general – in the presence of both lattice transl and some on-site symm.

Thank You!