Topological Magnons in Kitaev Magnets at High Fields

P. A. McClarty
X.-Y. Dong,
M. Gohlke,
J. G. Rau,
R. Moessner

F. Pollmann
K. Penc

Max Planck Institute for the
Dresden Physics of Complex Systems

arXiv:1802.04283
supported by DFG SFB 1143 and NKFIH K124176

Talk given at TOPMAT, 11 Jun-6 Jul 2018 Saclay (France)

A revolution in condensed matter started in 1980...

The
Integer Quantum Hall effect

K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980)
http://www.bourbaphy.fr/klitzing.pdf
5.2.1980 BIRTHDAY OF QHE (at 2 a.m.)

Resistance at $B=0$
Resistance at $B=19.8 \mathrm{~T}$
Hallresistance

from Kubo formula to Chern number

Linear response: $\quad \sigma_{H} \propto \sum \frac{\langle\alpha| j_{x}|\beta\rangle\langle\beta| j_{y}|\alpha\rangle-\langle\alpha| j_{y}|\beta\rangle\langle\beta| j_{x}|\alpha\rangle}{\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)^{2}}$
Ando, Matsumoto, Uemura 1975
since $\mathbf{j} \propto \mathbf{v} \propto \frac{\partial \mathcal{H}}{\partial \mathbf{k}}$

$$
\sigma_{H} \propto \sum_{\alpha, \beta} \frac{\langle\alpha| \frac{\partial \mathcal{H}}{\partial k_{x}}|\beta\rangle\langle\beta| \frac{\partial \mathcal{H}}{\partial k_{y}}|\alpha\rangle-\langle\alpha| \frac{\partial \mathcal{H}}{\partial k_{y}}|\beta\rangle\langle\beta| \frac{\partial \mathcal{H}}{\partial k_{x}}|\alpha\rangle}{\left(\epsilon_{\alpha}-\epsilon_{\beta}\right)^{2}}
$$

the same form as Berry curvature (1984).

Can be recast into a topological Avron, Seiler, Simon (1983) invariant (Chern number):

$$
\sigma_{H} \propto \int_{\mathrm{BZ}}\left(\partial_{x}\langle n(\mathbf{k})| \partial_{y}|n(\mathbf{k})\rangle-\partial_{y}\langle n(\mathbf{k})| \partial_{x}|n(\mathbf{k})\rangle\right)
$$

$\mathrm{n}(\mathbf{k})$ is the wave function at momentum \mathbf{k} in the Brillouin zone.

Topological invariants - geometry

Gauss-Bonnet formula for closed surfaces provides a link between local geometric properties (local curvature K) and global topological properties.
total curvature = Euler characteristic

$$
\frac{1}{2 \pi} \int_{S} K \mathrm{~d} A=2(1-g)
$$

g is the number of handles (e.g. torus $\mathrm{g}=1$, pretzel $\mathrm{g}=3$)

Topological invariants - Quantum mechanics

$$
F_{n}^{x y}(\mathbf{k})=\left\langle\partial_{x} n(\mathbf{k}) \mid \partial_{y} n(\mathbf{k})\right\rangle-\left\langle\partial_{y} n(\mathbf{k}) \mid \partial_{x} n(\mathbf{k})\right\rangle
$$

Berry curvature, $n(\mathbf{k})$ is the $\mathrm{n}^{\text {th }}$ wave function with momentum \mathbf{k} in the 2D Brillouin zone.

$$
C_{n}=\frac{1}{2 \pi i} \int_{\mathrm{BZ}} d k_{x} d k_{y} F_{n}^{x y}
$$

The Chern number is a topological invariant. It takes integer values only.
E.g. Integer Quantum Hall Effect and topology: $\quad \sigma_{x y}=\frac{e^{2}}{h} C$

Philosophy

Band structures may host nontrivial topological invariants with consequences for observable properties

noninteracting

- electrons
- magnons
- light in photonic crystals

Magnon Chern Insulator

Magnets should have significant spin-orbit coupling and have more than one mode
Unidirectional magnon modes living at edge of 2D magnets protected by topological index

Katsura, Nagaosa \& Lee,. PRL 104, 066403 (2010). Shindou, Matsumoto, Murakami, \& Ohe, PRB 87, 174427 (2013). Matsumoto, Murakami, PRL 106, 197202 (2011).

Edge state group velocity
k

In contrast to electronic cousins:

- Magnon edge states are gapped
- No quantized response except under exceptional circumstances
- Response thermally activated
- Thermal magnon Hall response (Transverse thermal conductivity: Temperature gradient and magnetic field)
- Spin Nernst effect (Transverse spin current: Temperature gradient in antiferromagnets

Observation of the Magnon Hall Effect

Y. Onose, ${ }^{1,2^{*}}$ T. Ideue, ${ }^{1}$ H. Katsura, ${ }^{3}$ Y. Shiomi, ${ }^{1,4}$ N. Nagaosa, ${ }^{1,4}$ Y. Tokura ${ }^{1,2,4}$

$\mathrm{Lu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ is a FM insulator

C

The crystal structure of $\mathrm{Lu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and the magnon Hall effect. (A) The V sublattice of $\mathrm{Lu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$, which is composed of corner-sharing tetrahedra. (B) The direction of the Dzyaloshinskii-Moriya vector on each bond of the tetrahedron. The Dzyaloshinskii-Moriya interaction acts between the i and j sites. (C) The magnon Hall effect. A wave packet of magnon (a quantum of spin precession) moving from the hot to the cold side is deflected by the Dzyaloshinskii-Moriya interaction playing the role of a vector potential.

Thermal Hall conductivity in the frustrated pyrochlore magnet $\mathrm{Tb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

M. Hirschberger, J. W. Krizan, R. J. Cava, and N. P. Ong Science 348, (2015)

FIG. 3: Curves of the thermal Hall conductivity $\boldsymbol{x}_{\mathrm{xy}} / \mathrm{T}$ vs. $\mathrm{H}^{2} \mathrm{~Tb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (Sample 2). From 140 to $50 \mathrm{~K}, \varkappa_{\mathrm{xy}} / \mathrm{T}$, is H linear (Panel A). Below 45 K , it develops pronounced curvature at large H , reaching its largest value near 12 K . The sign is always "hole-like". Panel B shows the curves below 15 K . A prominent feature is that the weak-field slope $\left[\varkappa_{x y} / T B\right] 0$ is nearly T independent below 15 K . Below 3 K , the field profile changes qualitatively, showing additional features that become prominent as $\mathrm{T} \rightarrow 0$, namely the sharp peak near 1 T and the broad maximum at 6 T.

Thermal Hall Effect of Spin Excitations in a Kagome Magnet

Max Hirschberger, Robin Chisnell, Young S. Lee and N. P. Ong
PRL 115, 106603 (2015)

Emergence of nontrivial magnetic excitations in a spin liquid state of kagome volborthite

Daiki Watanabe, Kaori Sugii, Masaaki Shimozawa, Yoshitaka Suzuki, Takeshi Yajima, Hajime Ishikawa, Zenji Hiroi, Takasada Shibauchi, Yuji Matsuda, Minoru Yamashita

Proc. NatI. Acad. Sci. USA 113, 8653 (2016)
Field (T)

Kitaev Honeycomb Magnetism

Exactly solvable anisotropic exchange model

Ground state is quantum spin liquid with gapless Majorana modes and gapped fluxon excitations

Apply small field perpendicular to plane to enter into chiral spin liquid regime

Kitaev-Heisenberg Model

Condensed matter physicist: Is the Kitaev model physical?
(Chaloupka) + Jackeli + Khaliullin: Yes!

$$
\mathcal{H}=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+\sum_{\langle i, j\rangle_{\gamma}} 2 K \mathbf{S}_{i}^{\gamma} \mathbf{S}_{j}^{\gamma}-\boldsymbol{h} \cdot \sum_{i} \mathbf{S}_{i}
$$

Honeycomb materials with edge sharing oxygen octahedra

- effective $\mathrm{J}=1 / 2$ in strong spin-orbit coupled ions Ir^{4+}
- spin orbit coupling gives mechanism for Kitaev exchange to arise
- isotropic exchange can be suppressed relative to Kitaev exchange: destructive interference from 90 degree Ir-O-Ir bonds
- Candidate materials: $\mathrm{Na}_{2} \mathrm{IrO}_{3}$ and $\alpha-\mathrm{RuCl}_{3}$

Materials

We need $J_{\text {eff }}=1 / 2$ moments

$$
\alpha-\mathrm{RuCl}_{3} \quad \mathrm{Na}_{2} \mathrm{IrO}_{3}
$$

- Both exhibit zero field - collinear zigzag magnetic - order
- Kitaev exchange thought to play important role in these magnets
- Much still remains to be understood in these magnets
- In particular, nature of excitations above the zero field ordered state in RuCl3 and field evolution
- Long-range order drops away in high field tilted from [111]

Semiclassical Phase Diagram, h || [111]

Magnon condensation
Transition to fully polarized state for [111] field
Quantum effects...phase boundaries renormalized, QSL appear Janssen, Andrade, Vojta
(2016/2017)

Semiclassical Phase Diagram, h || [111]

$$
\begin{aligned}
\mathcal{H}= & J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+\sum_{\langle i, j\rangle_{\gamma}} 2 K \mathrm{~S}_{i}^{\gamma} \mathbf{S}_{j}^{\gamma} \\
& -\boldsymbol{h} \cdot \sum_{i} \mathbf{S}_{i} \\
J & =\cos \theta \\
K & =\sin \vartheta
\end{aligned}
$$

Phys. Rev. Lett. 117, 277202 (2017)

Linear Spin Waves in Field-Polarized Phase

Janssen, Andrade, Vojta
(2016/2017)

$$
\mathbf{\Upsilon}_{\boldsymbol{k}}=\left(a_{\boldsymbol{k}}, b_{\boldsymbol{k}}, a_{-\boldsymbol{k}}^{\dagger}, b_{-\boldsymbol{k}}^{\dagger}\right)
$$

$\mathcal{H}_{\mathrm{LSW}}=\frac{1}{2} \sum_{\boldsymbol{k} \in \mathrm{BZ}} \boldsymbol{\Upsilon}_{\boldsymbol{k}}^{\dagger} \cdot \mathrm{H}_{\mathrm{LSW}}(\boldsymbol{k}) \cdot \boldsymbol{\Upsilon}_{\boldsymbol{k}}$
$\mathrm{H}_{\mathrm{LSW}}(\boldsymbol{k})=\left(\begin{array}{cc}\mathrm{A}(\boldsymbol{k}) & \mathrm{B}(\boldsymbol{k}) \\ \mathrm{B}^{\dagger}(\boldsymbol{k}) & \mathrm{A}^{T}(-\boldsymbol{k})\end{array}\right)$

$$
\begin{aligned}
& \mathrm{A}(\boldsymbol{k})=h\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+(3 J+2 K) S\left(\begin{array}{cc}
-1 & \gamma_{0, \boldsymbol{k}}^{*} \\
\gamma_{0, \boldsymbol{k}} & -1
\end{array}\right), \\
& \mathrm{B}(\boldsymbol{k})=2 K S\left(\begin{array}{cc}
0 & \gamma_{1, k}^{*} \\
\gamma_{2, \boldsymbol{k}} & 0
\end{array}\right) .
\end{aligned}
$$

Two magnon bands (two spins in the unit cell), the pairing terms $B(\boldsymbol{k})$ opens a gap between the bands

$$
\begin{aligned}
\gamma_{0, \mathbf{k}} & =\frac{1}{3}\left(e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{x}}}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{y}}}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{z}}}\right), \\
\gamma_{1, \mathbf{k}} & =\frac{1}{3}\left(e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{x}}-(\mathbf{2} \mathbf{i} / \mathbf{3})}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{y}}+(\mathbf{2} \pi \mathbf{i} / \mathbf{3})}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{z}}}\right), \\
\gamma_{2, \mathbf{k}} & =\frac{1}{3}\left(e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{x}}+(\mathbf{2} \mathbf{i} / \mathbf{3})}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{y}}-(\mathbf{2} \pi \mathbf{i} / \mathbf{3})}+e^{-i \mathbf{k} \cdot \boldsymbol{\delta}_{\mathbf{z}}}\right), \\
\boldsymbol{\delta}_{x} & =(0,1), \boldsymbol{\delta}_{y}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right), \boldsymbol{\delta}_{z}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)
\end{aligned}
$$

Linear spin wave dispersions

Kitaev Points and Topological Magnons

Focus on antiferromagnetic Kitaev point
Threshold field $\mathrm{h}=4$

Flat band condensation, localized modes -> degenerate classical manifold

Magnon bands have Chern number +1 and -1

Topology across Kitaev-Heisenberg

Mapping from $\vartheta \rightarrow \vartheta+\pi$ leaves the spin wave spectrum invariant as measured from threshold field

Except for isolated points, whole of polarized phase has topological bands

Comparing linear spin wave and ED

Comparing magnetization and excitations in ED

Comparing linear spin wave and ED

Canonical transformation

$$
\begin{aligned}
\mathrm{H}_{\mathrm{LSW}}(\boldsymbol{k})=\left(\begin{array}{cc}
\mathrm{A}(\boldsymbol{k}) & \mathrm{B}(\boldsymbol{k}) \\
\mathrm{B}^{\dagger}(\boldsymbol{k}) & \mathrm{A}^{T}(-\boldsymbol{k})
\end{array}\right) \quad \mathrm{A}(\boldsymbol{k})=h\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+(3 J+2 K) S\left(\begin{array}{cc}
-1 & \gamma_{0, \boldsymbol{k}}^{*} \\
\gamma_{0, \boldsymbol{k}} & -1
\end{array}\right), \\
\mathrm{B}(\boldsymbol{k})=2 K S\left(\begin{array}{cc}
0 & \gamma_{1, \boldsymbol{k}}^{*} \\
\gamma_{2, \boldsymbol{k}} & 0
\end{array}\right) .
\end{aligned}
$$

effective model in $1 / h$ to reduce the anomalous term

$$
\left.\begin{array}{rl}
\mathcal{H}_{\mathrm{eff}} & =e^{\mathcal{W}} \mathcal{H} e^{-\mathcal{W}}=\mathcal{H}+[\mathcal{W}, \mathcal{H}]+\frac{1}{2}[\mathcal{W},[\mathcal{W}, \mathcal{H}]]+\cdots \\
\mathcal{W} & =\frac{K S}{h} \sum_{\boldsymbol{k} \in \mathrm{BZ}}\left(\gamma_{1, \boldsymbol{k}}^{*} a_{\boldsymbol{k}}^{\dagger} b_{-\boldsymbol{k}}^{\dagger}-\gamma_{1, \boldsymbol{k}} a_{\boldsymbol{k}} b_{-\boldsymbol{k}}\right),
\end{array} \quad \begin{array}{r}
\text { effective magnon hopping } \\
\text { model with nearest neighbor } \\
\text { and complex next-neighbor } \\
\text { hopping (DM interaction) }
\end{array}\right), ~ \begin{array}{cc}
\mathrm{A}_{\mathrm{eff}}(\boldsymbol{k}) & =\mathrm{A}(\boldsymbol{k})-\frac{2 K^{2} S^{2}}{h}\left(\begin{array}{cc}
\gamma_{1, \boldsymbol{k}}^{*} \gamma_{1, \boldsymbol{k}} & 0 \\
0 & \gamma_{2, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}
\end{array}\right), \\
\mathrm{B}_{\mathrm{eff}}(\boldsymbol{k}) & =-\frac{K(3 J+2 K) S^{2}}{h}\left(\begin{array}{cc}
\gamma_{0, \boldsymbol{k}} \gamma_{1, \boldsymbol{k}}^{*}+\gamma_{0, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}} & -2 \gamma_{1, \boldsymbol{k}}^{*} \\
-2 \gamma_{2, \boldsymbol{k}} & \gamma_{0, \boldsymbol{k}} \gamma_{1, \boldsymbol{k}}^{*}+\gamma_{0, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}
\end{array}\right),
\end{array}
$$

Canonical transformation

High field effective
Hamiltonian is the famous
Haldane model

cf.
Se Kwon Kim, H. Ochoa, R. Zarzuela, and Y. Tserkovnyak Realization of the Haldane-Kane-Mele Model in a System of Localized Spins
PRL 117, 227201 (2016)
effective magnon hopping model with nearest neighbor and complex next-neighbor

$$
\mathrm{A}_{\mathrm{eff}}(\boldsymbol{k})=\mathrm{A}(\boldsymbol{k})-\frac{2 K^{2} S^{2}}{h}\left(\begin{array}{cc}
\gamma_{1, \boldsymbol{k}}^{*} \gamma_{1, \boldsymbol{k}} & 0 \\
0 & \gamma_{2, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}
\end{array}\right)
$$

hopping (DM interaction)
$\mathrm{B}_{\mathrm{eff}}(\boldsymbol{k})=-\frac{K(3 J+2 K) S^{2}}{h}\left(\begin{array}{cc}\gamma_{0, \boldsymbol{k}} \gamma_{1, \boldsymbol{k}}^{*}+\gamma_{0, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}} & -2 \gamma_{1, \boldsymbol{k}}^{*} \\ -2 \gamma_{2, \boldsymbol{k}} & \gamma_{0, \boldsymbol{k}} \gamma_{1, \boldsymbol{k}}^{*}+\gamma_{0, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}\end{array}\right)$,

Chern number

For large fields, we can neglect the anomalous part $B_{\text {eff, }}$, and work only with Aeff normal part describing the hopping of the magnon:

$$
\begin{gathered}
\mathrm{A}_{\mathrm{eff}}(\boldsymbol{k})=\mathrm{A}(\boldsymbol{k})-\frac{2 K^{2} S^{2}}{h}\left(\begin{array}{cc}
\gamma_{1, \boldsymbol{k}}^{*} \gamma_{1, \boldsymbol{k}} & 0 \\
0 & \gamma_{2, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}
\end{array}\right) \\
=d_{0}(\boldsymbol{k})+\frac{1}{2} \mathbf{d}(\boldsymbol{k}) \cdot \vec{\sigma} \\
\mathbf{d}(\boldsymbol{k})=\left(\begin{array}{c}
(3 J+2 K) S\left(\gamma_{0, \boldsymbol{k}}^{*}+\gamma_{0, \boldsymbol{k}}\right) \\
i(3 J+2 K) S\left(\gamma_{0, \boldsymbol{k}}^{*}-\gamma_{0, \boldsymbol{k}}\right) \\
-\frac{2 K^{2} S^{2}}{h}\left(\gamma_{1, \boldsymbol{k}}^{*} \gamma_{1, \boldsymbol{k}}-\gamma_{2, \boldsymbol{k}}^{*} \gamma_{2, \boldsymbol{k}}\right)
\end{array}\right) \\
\text { Finite Chern number if the surface of } \\
\text { the } \mathrm{d}(\mathrm{k}) \text { vector has a finite volume } \\
\text { around the origin (skyrmion). }
\end{gathered}
$$

Chern number and skyrmions : arbitrary spin

Berry curvature

$$
\begin{aligned}
F_{n}^{x y}(\mathbf{k}) & =\partial_{x}\langle n(\mathbf{k})| \partial_{y}|n(\mathbf{k})\rangle-\partial_{y}\langle n(\mathbf{k})| \partial_{x}|n(\mathbf{k})\rangle \\
& =2 i \sum_{m \neq n} \operatorname{Im} \frac{\langle n|\left(\partial_{x} H\right)|m\rangle\langle m|\left(\partial_{y} H\right)|n\rangle}{\left(E_{n}-E_{m}\right)^{2}} .
\end{aligned}
$$

Hamiltonian (Zeeman levels)

$$
\begin{gathered}
H(\mathbf{k})=J \mathbf{1}-\mathbf{d}(\mathbf{k}) \cdot \mathbf{Q} \\
H(\mathbf{k})|n\rangle=[J-n d(\mathbf{k})]|n\rangle \\
{\left[Q^{\alpha}, Q^{\beta}\right]=i \varepsilon_{\alpha \beta \gamma} Q^{\gamma} \mathrm{SU}(2) \text { algebra }}
\end{gathered}
$$

$$
\begin{aligned}
F_{n}^{x y}(\mathbf{k}) & =2 i \sum_{\alpha, \beta} \frac{\partial_{x} d^{\alpha}(\mathbf{k}) \partial_{y} d^{\beta}(\mathbf{k})}{d^{2}(\mathbf{k})} \sum_{m \neq n} \operatorname{Im} \frac{\langle n| Q^{\alpha}|m\rangle\langle m| Q^{\beta}|n\rangle}{(n-m)^{2}} \\
& =2 i \sum_{\alpha, \beta} \frac{\partial_{x} d^{\alpha}(\mathbf{k}) \partial_{y} d^{\beta}(\mathbf{k})}{d^{2}(\mathbf{k})} \operatorname{Im}\left(\langle n| Q^{\alpha}|n+1\rangle\langle n+1| Q^{\beta}|n\rangle+\langle n| Q^{\alpha}|n-1\rangle\langle n-1| Q^{\beta}|n\rangle\right)
\end{aligned}
$$

$$
\vdots \quad \text { the Berry curvature is proportional to }
$$

$$
=i n \hat{\mathbf{d}}(\mathbf{k}) \cdot\left(\partial_{y} \hat{\mathbf{d}}(\mathbf{k}) \times \partial_{x} \hat{\mathbf{d}}(\mathbf{k})\right)
$$ the skyrmion density

skyrmion number

$$
N_{s}=\frac{1}{4 \pi} \int d k_{x} d k_{y} \hat{\mathbf{d}} \cdot\left(\partial_{y} \hat{\mathbf{d}} \times \partial_{x} \hat{\mathbf{d}}\right)
$$

$$
C_{n}=\frac{1}{2 \pi i} \int d k_{x} d k_{y} F_{n}^{x y}=-2 n N_{s}
$$

The Chern number of the n-th band is $2 n$ times the number of skyrmions -> $2 n$ edge states

Kitaev-Heisenberg $-\Gamma-\Gamma^{\prime}$ model

Symmetry of Kitaev materials allows two further nearest neighbor exchange couplings

$$
\begin{aligned}
\mathcal{H}_{x}= & 2 K \mathrm{~S}_{1}^{x} \mathrm{~S}_{2}^{x}+J \mathrm{~S}_{1} \cdot \mathrm{~S}_{2}+\Gamma\left(\mathrm{S}_{1}^{z} \mathrm{~S}_{2}^{y}+\mathrm{S}_{1}^{y} \mathrm{~S}_{2}^{z}\right) \\
& +\Gamma^{\prime}\left(\mathrm{S}_{1}^{x} \mathrm{~S}_{2}^{y}+\mathrm{S}_{1}^{x} \mathrm{~S}_{2}^{z}+\mathrm{S}_{1}^{y} \mathrm{~S}_{2}^{x}+\mathrm{S}_{1}^{z} \mathrm{~S}_{2}^{x}\right)
\end{aligned}
$$

In fully polarized phase, can map any point in full phase diagram into KitaevHeisenberg model at some field

$$
\begin{aligned}
K & \rightarrow K+\Gamma-\Gamma^{\prime}, \\
J & \rightarrow J-\Gamma, \\
h & \rightarrow h-3 \Gamma S-6 \Gamma^{\prime} S
\end{aligned}
$$

So whole paramagnetic region is topological except for isolated surfaces

Can topological magnons exist in materials?

Magnon-Magnon Interactions

Magnon-magnon interactions from Holstein-Primakoff beyond 1/S

$$
\mathcal{H}_{3}=\frac{1}{2} \sum_{\boldsymbol{k}_{\mu}} V_{3}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)\left(a_{\boldsymbol{k}_{1}}^{\dagger} a_{\boldsymbol{k}_{2}}^{\dagger} a_{\boldsymbol{k}_{3}}+\text { h.c. }\right)+\ldots
$$

Generally number non-conserving terms
Single particle picture may not survive in any detail

Decay
Kinematically
Allowed

Four-magnon terms to same order.

The Death of Topological Magnons?

Kagome ferromagnet with Dzyaloshinskii-Moriya exchange

Topological Magnons Live?

High Field

Methods I: Perturbation Theory

Compute Green's function

$$
\overrightarrow{\mathrm{G}}(\vec{k}, \omega)=\left[\left(\omega+i 0^{+}\right) \vec{\eta}-\overrightarrow{\mathrm{M}}(\vec{k})-\vec{\Sigma}_{\overrightarrow{\mathrm{M}}}(\vec{k}, \omega)\right]^{-1},
$$

formally to one order beyond linear spin wave theory

Self-consistent approach
Renormalize $\overrightarrow{\mathrm{M}}(\vec{k})$ by including static parts of Hartree-Fock self-energy
Use this to evaluate self-energy in omega.
Get the various components of dynamical structure factor

$$
S(\boldsymbol{k}, \omega) \equiv \sum_{\alpha} \sum_{a, b}\left\langle\mathrm{~S}_{a}^{\alpha}(-\boldsymbol{k},-\omega) \mathrm{S}_{b}^{\alpha}(\boldsymbol{k}, \omega)\right\rangle
$$

Methods II: DMRG + tMPO

- DMRG on long cylinder with periodic boundary conditions and few unit cells around
- Time evolution on matrix product state after flipping spin to get dynamical structure factor
- This work is first benchmark of technique with perturbation theory

Bulk Spin Waves

Bulk Spin Waves: AFM Kitaev

Bulk Spin Waves: Ferromagnetic Kitaev

Bulk Spin Waves: AFM vs FM Kitaev

Slab Geometry and High Fields

Does the chiral edge state survive?
$h=3$
AFM Kitaev

NLSWT

DMRG +tMPO

Slab Geometry to Lower Fields

Slab Geometry to Lower Fields

FM Kitaev $\mathrm{h}=2$

AFM Kitaev $\mathrm{h}=4$

Thermal Hall Conductivity

Chern bands in electrons \longrightarrow quantum Hall effect
transverse heat current

$$
\begin{aligned}
\kappa^{x y} & =\frac{1}{\beta} \sum_{n} \int_{\mathrm{BZ}} d^{2} \mathbf{k} c_{2}\left(\rho_{n}\right) \frac{F_{n}^{x y}(\mathbf{k})}{i} \\
\rho_{n} & =\frac{1}{e^{\omega_{n} \beta}-1} \\
c_{2}(\rho) & =\int_{0}^{\rho} d t \ln ^{2}\left(1+t^{-1}\right)
\end{aligned}
$$

thermal Hall effect in bosons: linear response (Kubo formula) formalism Katsura et al., PRL 104, 066403 (2010), Matsumoto et al PRL 106 197202, (2011)

Thermal Hall Effect in the Kitaev model

FM Kitaev point ($\mathrm{S}=1 / 2$), $\mathrm{K}=-1$
h=0.01,0.02,0.05,0.1,0.2, $0.5,1,2,3,4$ to be read in the arrow direction.

Unusual thermal Hall effect in a Kitaev spin liquid candidate aRuCl3

Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M. Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda arXiv:1709.10286

Large Thermal Hall Effect in a-RuCl3:

 Evidence for Heat Transport by Kitaev-Heisenberg ParamagnonsR. Hentrich, M. Roslova, A. Isaeva, T. Doert, W. Brenig, B. Büchner, C. Hess arXiv:1803.08162

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara, T. Ohnishi, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda

```
arXiv:1805.05022
```


Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara et al., arXiv:1805.05022

$$
\kappa_{x y}^{2 \mathrm{D}} / T=q(\pi / 6)\left(k_{B}^{2} / \hbar\right)
$$

also expected in time-reversal-symmetrybroken topological superconductors

FIG. 2. Longitudinal thermal conductivity in α $\mathbf{R u C l}_{3}$. a, Temperature dependence of $\kappa_{x x}$ in magnetic field

FIG. 3. Half-integer thermal Hall conductance plateau. a-d, Thermal Hall conductivity $\kappa_{x y} / T$ in tilted

Topological Magnons: an Outlook

- Range of topological band structures possible in magnon systems
- Chern numbers can arise in spin-orbit coupled systems with symmetric or antisymmetric exchange
- Interactions potentially important but magnetic field tuning offers way to render them negligible in certain systems
- Thermal Hall effect is first set of experiments to explore

Thank you for your attention

