
Anders W Sandvik 
Institute of Physics, Chinese Academy of Sciences, Beĳing 

and Boston University

Exploring Novel Quantum Phase Transitions 
with J-Q models (2D)

TOPMAT, CEA Saclay, June 12, 2018   

Part I 
Symmetry-enhanced first-order transition  

between an AFM and a Z2 VBS
Part II 

AFM to random-singlet transition in the presence of disorder



= ⟨S⃗i · S⃗j⟩

(Sandvik, PRL 2007)The “J-Q” model with two projectors is

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous 
• Not a realistic microscopic model for materials 
• “Designer Hamiltonian” for VBS physics and AF-VBS transition

Broader context: deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)
Continuous AF - VBS transition at T=0

- violation of Landau rule

- first-order would normally be expected

- role of  topological defects (dangerous) 

Cij = 1
4 � ⇤Si · ⇤Sj

Numerical (QMC) tests using J-Q models

[Shao, Guo, Sandvik (Science 2016)]• Unusual scaling properties

f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.
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Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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Symmetry Enhanced First-Order Phase 
Transition in a 2D Quantum Antiferromagnet

in collaboration with
Bowen Zhao and Phil Weinberg (BU)

- Experimental motivation: Plaquette singlet solid (PSS) in SrCu2(BO3)2
- J-Q model to mimic aspects of the Shastry-Sutherland model
- Simulation results; unusual AFM-PSS first-order transition
- Emergent O(4) symmetry 
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Figure 1 | Phase diagram of SrCu2(BO3)2 as a function of pressure and temperature, including excitation energies. The blue region is the dimer phase, the
red region the newly identified plaquette phase, and the green region is the antiferromagnetic phase where Q= (1, 0, 0) magnetic Bragg peaks, indicated by
green squares, are observed only above 40 kbar. Circles are the triplet gap energy � at Q= (2, 0,L), diamonds are the corresponding two-triplet bound
state (BT) energy EBT and the star is a new low-energy excitation (LE) observed at Q= (1, 0, 1). The magenta line shows the tetragonal to monoclinic
structural transition. The procedure used to obtain it and its error bars is described in ref. 28. The corresponding monoclinic space groups are
indicated29,30. The dashed line in the plaquette phase is the extrapolated energy gap using ref. 9. The insets depict the corresponding ground states. All of
the experimental points are from this study.

it directly modifies the atomic distances and bridging angles,
such as Cu–O–Cu and thus the magnetic exchange integrals.
Quantum phase transitions were successfully discovered in dimer
magnets following application of pressure22. However high-
pressure measurements remain technically challenging. In the
case of SrCu2(BO3)2, magnetic susceptibility23 and electron spin
resonance24 tomoderate pressures (p12 kbar) indicate a softening
of the gap, while the combined e�ect of pressure and field was
measured by susceptibility and NMR25. In the latter case, magnetic
order occurring at 24 kbar and 7 T on a fraction of the dimers was
proposed. In an X-ray di�raction investigation, the temperature
dependence of the lattice parameters was analysed as an indirect
proxy for the singlet–triplet gap leading to the suggestion that it
closes at 20 kbar26. At even higher pressures, neutron and X-ray
di�raction experiments observed a transition above 45 kbar from
the ambient I4̄2M tetragonal space group to monoclinic27–30.

Here we present neutron spectroscopy results, which directly
determine the pressure dependence of the gap and through
the dynamic structure factor allow us to address the nature
of the correlations. Figure 1 summarizes the phase diagram
of SrCu2(BO3)2, which we determined in this study. The exact
dimer phase survives up to 16 kbar. The gap decreases from
3meV to 2meV, but does not vanish. At 21.5 kbar, we discover
experimentally a new, intermediate phase. We identify it by its
inelastic neutron scattering spectrum as the formation of 4-spin
plaquette singlets. Above 40 kbar and below 117K we find by
neutron di�raction that AFM order appears (Supplementary Fig. 6)
while the compound probably still has tetragonal symmetry with
orthogonal dimers. Above ⇠45 kbar, a structural distortion takes
place and the symmetry becomes monoclinic, implying non-
orthogonal dimers28,29. SrCu2(BO3)2 is magnetically ordered after
the distortion, but can no longer be described appropriately by
the original Shastry–Sutherland model. The transition from 2-spin
dimer to 4-spin plaquette singlets appears to be of first order,
whereas the transition from the plaquette to the AFM phase could
be of second order and concomitant with the continuous closure of
the plaquette gap as sketched in Fig. 1 or of first order9,20.

To allow a quantitative comparison to theoretical predictions,
we establish the pressure dependence of the exchange parameters
J� (p), J 0

�
(p) and ↵(p) by measuring magnetic susceptibility �(p,T )

and fitting it using 20-site exact diagonalization. The peak in
susceptibility shifts to lower temperature as pressure increases up
to 10 kbar (Fig. 2a). This suggests a reduction of the spin gap.
We parametrize the pressure dependence of J and J 0 by linear fits
(Fig. 2b). J has the larger slope so that ↵ increases with pressure.
Having established ↵(p) we see that the critical pressure lying
between 16 kbar and 21.5 kbar corresponds to 0.66< ↵c < 0.68, in
good agreement with theoretical predictions4,12,20.

A selection from the neutron spectra leading to the phase
diagram is presented in Fig. 3; additional spectra at various
momenta transfer Q are shown in the Supplementary Information.
Up to 16 kbar an essentially Q-independent linear decrease of the
gap energy is observed (Figs 1 and 3a). The measurement of the
dispersion and of the structure factor in that pressure range shows
that the spin system is still in its original ‘exact dimer’ phase.
The gap value and the integrated intensity decrease linearly with
pressure. The dispersion increases slightly with pressure, which
can be understood by the increase of ↵ (ref. 6). Interestingly, the
bound triplet energy EBT softens twice as fast, implying that the
triplet binding energy, �=2��EBT =1.19(2)meV, remains quasi
pressure independent. This results in the unusual situation that
extrapolating the softenings, the bound triplet would reach zero
energy before the single triplet, and hence that, before that point,
exciting a bound state of two triplets would cost less energy than
exciting one triplet.

SrCu2(BO3)2 enters a new quantum phase between 16 and
21.5 kbar, where a discontinuity in the gap softening occurs. The
inelastic neutron scattering peaks corresponding to the gap energy,
�'2meV, at these two pressures remain unchanged (Fig. 3b). The
discontinuity is also visible in the intensities (Fig. 3d), where the
linear decrease with pressure exhibits an abrupt halt above 16 kbar.

The transition to a new quantum phase is further asserted by a
new type of excitation suddenly appearing at the higher pressure
(Fig. 3b,c). We label this new low-energy excitation LE. LE is clearly
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4-spin plaquette singlet state in the
Shastry–Sutherland compound SrCu2(BO3)2
M. E. Zayed1,2,3*, Ch. Rüegg2,4,5, J. Larrea J.1,6, A. M. Läuchli7, C. Panagopoulos8,9, S. S. Saxena8,
M. Ellerby5, D. F. McMorrow5, Th. Strässle2, S. Klotz10, G. Hamel10, R. A. Sadykov11,12, V. Pomjakushin2,
M. Boehm13, M. Jiménez–Ruiz13, A. Schneidewind14, E. Pomjakushina15, M. Stingaciu15, K. Conder15

and H. M. Rønnow1

The study of interacting spin systems is of fundamental
importance for modern condensed-matter physics. On frus-
trated lattices, magnetic exchange interactions cannot be
simultaneously satisfied, and often give rise to compet-
ing exotic ground states1. The frustrated two-dimensional
Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4)
is an important test case for our understanding of quantum
magnetism. It was constructed to have an exactly solvable
2-spin dimer singlet ground state within a certain range of
exchange parameters and frustration. While the exact dimer
state and the antiferromagnetic order at both ends of thephase
diagram arewell known, the ground state and spin correlations
in the intermediate frustration range have been widely de-
bated2,4–14. We report here the first experimental identification
of the conjectured plaquette singlet intermediate phase in
SrCu2(BO3)2. It isobservedby inelasticneutronscatteringafter
pressure tuning to 21.5 kbar. This gapped singlet state leads
to a transition to long-range antiferromagnetic order above
40 kbar, consistentwith the existenceof a deconfinedquantum
critical point.

In the field of quantum magnetism, geometrically frustrated
lattices generally imply major di�culties in analytical and
numerical studies. For very few particular topologies, however, it
has been shown that the ground state, at least, can be calculated
exactly as for the Majumdar–Ghosh model15 that solves the J1 � J2
zigzag chain when J1 = 2J2. In two dimensions, the Shastry–
Sutherland model2 consisting of an orthogonal dimer network of
spin S= 1/2 was developed to be exactly solvable. For an inter-
dimer J 0 to intra-dimer J exchange ratio ↵ ⌘ J 0/J 0.5 the ground
state is a product of singlets on the strong bond J . Numerical
calculations have further shown that this remains valid up to
↵⇠0.7 and for small values of three-dimensional (3D) couplings
J 00 between dimer layers. At the other end, for ⇠0.9  ↵  1
the system approaches the well-known 2D square lattice, which

is antiferromagnetically (AFM) ordered, albeit with significant
quantum fluctuations that are believed to include resonating
singlet correlations resulting in fractional excitations16. The phase
diagram of the Shastry–Sutherland model, both with and without
applied magnetic field, has been intensively studied by numerous
theoretical and numerical approaches4. In the presence of magnetic
field, magnetization plateaus at fractional values of the saturation
magnetization corresponding to Mott insulator phases of dimer
states, as well as possible superfluid and supersolid phases have been
extensively studied7,17–19. At zero field, themain unsolved issue is the
existence and nature of an intermediate phase for⇠0.7↵⇠0.9.
A variety of quantum phases and transitions between them have
been predicted depending on the theoretical technique used: a
direct transition from dimer singlet phase to AFM order2,6,7, or an
intermediate phase with helical order5, columnar dimers11, valence
bond crystal12 or resonating valence bond plaquettes9,10. Recent
results indicate that a plaquette singlet phase is favoured4,20. From
such a phase, which would have an additional Ising-type order
parameter, a subsequent transition to AFM order could provide a
realization of the so far elusive deconfined quantum critical point21.

The compound strontium copper borate SrCu2(BO3)2 is the only
known realization of the Shastry–Sutherland model with S= 1/2
spins4 and has thus triggered considerable attention in the field
of quantum magnetism. The spectrum of SrCu2(BO3)2 exhibits
an almost dispersionless � = 3meV gap, and a bound state of
two triplets (BT) forms at EBT ' 5meV. The unusual size and
dispersionless nature of the gap is an e�ect of the frustration that
prevents triplets from hopping up to sixth order4. The estimated
exchange parameters in the material J ⇠85K and ↵=0.635 (ref. 4)
or J ⇠ 71K and ↵ = 0.603 (ref. 8) place the compound close
to an interesting regime ↵ ⇠ 0.7 where correlations may change
dramatically at a critical point.

A precious means to tune a quantum magnet across a quantum
phase transition is the application of hydrostatic pressure as

1Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. 2Laboratory for
Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland. 3Department of Physics, Carnegie Mellon University in Qatar,
Education City, PO Box 24866, Doha, Qatar. 4Department of Quantum Matter Physics, University of Geneva, 1211 Geneva 4, Switzerland. 5London Centre
for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK. 6Centro Brasileiro de Pesquisas Fisicas,
Rua Doutor Xavier Sigaud 150, CEP 2290-180, Rio de Janeiro, Brazil. 7Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck, Austria.
8Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK. 9Division of Physics and Applied Physics, School of Physical and Mathematical
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Is the Plaquette-AFM
transition a deconfined
quantum critical point?



PSS state known in the SS model (tensor network, iPEPS, calculations)PHILIPPE CORBOZ AND FRÉDÉRIC MILA PHYSICAL REVIEW B 87, 115144 (2013)

J
0

Dimer phase Plaquette phase Néel phase

0.765(15)0.675(2)

FIG. 1. (Color online) The phase diagram of the Shastry-
Sutherland model as a function of nearest-neighbor coupling J

(J ′ = 1), obtained with iPEPS. The width of a bond is proportional
to the magnitude of the bond energy, where full (dashed) lines
correspond to negative (positive) energies. The arrows in the right
panel illustrate the Néel order. In between the well-established dimer
and Néel phase we find a phase with plaquette long-range order.

The paper is organized as follows: In Sec. II we provide
a brief introduction to the iPEPS method and explain the
different simulation setups used in this work. In Sec. III
we present our simulation results, first for values of J deep
in the individual phases, followed by a detailed study of
the phase transitions. Finally, in Sec. IV we summarize our
findings. In the Appendix the scheme to treat next-nearest-
neighbor interactions in iPEPS is explained.

II. METHOD

A. Infinite projected entangled-pair states

In this section we provide a short overview of iPEPS. For
a more detailed introduction to iPEPS and tensor networks in
general we refer to Refs. 14 and 25–27.

The main idea of a tensor network ansatz is to represent
(approximate) the coefficients ci1i2...iN of a wave function,

|!⟩ =
∑

i1i2...iN

ci1i2i3...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩, (2)

by a trace over a product of tensors. Here each index ik
runs over the d local basis states of a lattice site. The most
famous example is matrix product states (MPS) which form
the class of variational states underlying the density-matrix
renormalization group (DMRG) method.15 In an MPS the
coefficients are given by a trace over the product of 3-index
tensors T lr

i (with 2-index tensors at the boundaries), as for
example for a 6-site system

ci1i2i3i4i5i6 ≈
∑

j1j2j3j4j5

A
j1
i1
B

j1j2
i2

C
j2j3
i3

D
j3j4
i4

E
j4j5
i5

F
j5
i6

. (3)

Thus, each coefficient ci1i2i3i4i5i6 is given by a product of
matrices (with vectors at the open boundaries), hence the name
matrix product state. Tensor networks are most conveniently
represented graphically, as shown in Fig. 2(a) for this particular
example. Each tensor is represented by a shape with lines (legs)
attached to it, which correspond to the indices of the tensor.
A connection between two tensors implies a sum over the
corresponding index, and an open leg of a tensor corresponds
to the physical index for the local Hilbert space of a site. Each
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FIG. 2. (Color online) Graphical representation of an infinite
projected entangled-pair state (iPEPS) made of a 4 × 2 unit cell
of tensors (surrounded by thick dashed lines) which is periodically
repeated. Each sphere corresponds to a rank-5 tensor and the lines
(legs) attached to the sphere represent the indices of the tensor, as
shown on the right-hand side.

auxiliary index jk runs over D elements, which is called the
bond dimension. Thus, D controls the size of the tensors (or
matrices), i.e., the number of variational parameters of the
ansatz.

A projected entangled-pair state (PEPS)13 is a natural
generalization of a matrix product state to two dimensions.
Instead of a three-index tensor, a five-index tensor T ldru

i

is introduced for each lattice site on a two-dimensional
(square) lattice, where each tensor is connected with its four
neighboring tensors via the auxiliary indices l, d, r , u, each
having a bond dimension D. Thus, the number of variational
parameters per tensor is dD4. An infinite PEPS (iPEPS) is an
ansatz for a wave function in the thermodynamic limit.14 It is
made of a unit cell of tensors which is periodically repeated on
the infinite lattice, as depicted in Fig. 2(b). If the wave function
is translational invariant, the same tensor can be used on each
lattice site. If the state breaks translational symmetry, a larger
unit cell may be required.17 In practice, different unit cell sizes
are tested to check, which size leads to the state with lowest
variational energy.

An iPEPS with D = 1 is nothing but a site-vectorized wave
function (a product state), parametrized by vectors Ti on each
site. With increasing D the iPEPS can represent more and more
entangled states, with a scaling of the entanglement with block
size which obeys the area law of the entanglement entropy.25,28

Or in other words, with increasing D the iPEPS can take
into account more of the quantum fluctuations of the true
ground state. These quantum fluctuations may select, e.g., one
of infinitely many degenerate states in the classical D = 1
case. Thus, iPEPS provides a way to systematically study a
state as a function of D, where D controls the amount of
quantum fluctuations (or entanglement) in the system.

In order to obtain an approximate representation of the
ground state for a given Hamiltonian, the tensors need to
be optimized; i.e., the best variational parameters have to be
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
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=
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r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD
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i| = |hD
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i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D
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, D
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). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D
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) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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To study AFM-PSS transition in detail with QMC
- replace frustrated bonds by 4-spin Q terms
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Theoretical descriptions of quantum phase transitions have indicated the existence of critical points with
higher symmetry than those of the underlying Hamiltonian. Points of emergent symmetry have not been ex-
pected at discontinuous (first-order) transitions, however. Here we present such an example, where phase coex-
istence at a first-order transition takes the form of an enhanced rotational symmetry in a space of two order pa-
rameters. Using quantum Monte Carlo simulations to study a two-dimensional (2D) S = 1/2 quantum magnet
hosting the antiferromagnetic (AFM) and plaquette-singlet solid (PSS) states recently detected in SrCu2(BO3)2,
we observe that the O(3) symmetric AFM order and the Z2 symmetric PSS order form an SO(4) vector at the
transition. The control parameter (a coupling ratio) rotates the vector from the AFM sector to the PSS sector,
with the length of the combined order parameter vector always remaining non-zero. This phenomenon should
be observable in neutron scattering experiments on SrCu2(BO3)2.

Introduction.—Theoretical studies of exotic quantum states
of matter and the transitions between them can provide new
perspectives on quantum many-body physics and stimulate
experimental investigations. One example is the quantum
phase transition between Néel antiferromagnetic (AFM) and
spontaneously dimerized valence-bond solid (VBS) states in
two-dimensional (2D) quantum magnets [1, 2]. The theory of
deconfined quantum critical points (DQCPs) suggests that this
transition represents a breakdown of the Landau-Ginzburg-
Wilson (LGW) mechanism of phase transitions, as a conse-
quence of quasi-particle fractionalization [3, 4]. Over the past
decade, likely DQCPs have been identified in lattice models,
using “designer hamiltonians” constructed for their amenabil-
ity to large-scale quantum Monte Carlo (QMC) simulations
of VBS physics and the AFM–VBS transition [5–16]. How-
ever, only very recently was a potential experimental realiza-
tion of this type of DQCP reported—in the quasi-2D Shastry-
Sutherland (SS) compound SrCu2(BO3)2 under pressure [17].
Though the SS model Hamiltonian [18] is difficult to study
numerically, due to its geometrical frustration (which causes
sign problems in QMC simulations), a specific type of VBS—
a two-fold degenerate plaquette-singlet solid (PSS)—between
the known AFM and bond-singlet phases was nevertheless
demonstrated rather convincingly using a calculation with
tensor-network states [19]. Zayed et al. [17] showed that a
PSS also exists in SrCu2(BO3)2 and suggested that the AFM–
PSS transition may be a DQCP. The phase transition was not
studied in the experiment, however, and it is not immediately
clear if the two-fold degenerate PSS can support spinon de-
confinement in the same way as a four-fold degenerate VBS.
QMC studies of rectangular lattices with two-fold degenerate
VBS states point to a first-order transition [13].

Here we propose and study a sign-problem-free model that
mimics the SS compound, in the sense that it shares the same
kinds of AFM and PSS ground states. The Hamiltonian, illus-
trated in Fig. 1 along with the SS model, is a new member in
the “J-Q” family of Hamiltonians [5], with standard antifer-
romagnetic Heisenberg exchange of strength J supplemented
by four-spin interactions of strength Q that weaken and even-

tually destroy the AFM order. Our QMC simulations demon-
strate a quantum phase transition of a new kind, where the
O(3) symmetry of the AFM order parameter and the Z2 sym-
metry of the PSS order combine into an SO(4) (pseudo)vector,
even though no such large symmetry is apparent in the Hamil-
tonian. Non-LGW transitions with emergent higher symme-
tries have been intensely investigated during the past few years
[20–27], but, to our knowledge, always in the context of criti-
cal points, where the magnitude of the order parameter(s) van-
ishes. In the case discussed here, the order parameters exhibit
discontinuities, but the transition is not a conventional first-
order one. We show that the AFM order is rotated by the con-
trol parameter into PSS order, and that coexistence of the two
phases at the transition is in the form of an SO(4) symmet-
ric vector order parameter. The transition mechanism is, thus,
similar to that in an ordered system tuned through a point of
explicitly higher symmetry that separates ordered phases with
symmetries that are subgroups of the higher symmetry. A well
known case is the XXZ spin model tuned from the O(2) sym-
metric XX phase through the O(3) symmetric XXX (Heisen-
berg) point into the Z2 (Ising) phase. However, in our system
the different components of the SO(4) vector are physically
distinct order parameters, not just different components of a
magnetic order, and the higher symmetry is emergent instead
of explicit and trivial.

Ground states.—Our Hamiltonian can be defined using sin-
glet projection operators P

ij

= �(1/4 � S
i

· S
j

);

H = �J
X

hiji

P
ij

� Q
X

ijkl2⇤0

(P
ij

P
kl

+ P
ik

P
jl

), (1)

where hiji denotes nearest neighbors on a periodic 2D square
lattice with N = L2 sites and ⇤0 are the 2 ⇥ 2-site plaque-
ttes with J 0 bonds in the SS model (Fig. 1), with ijkl corre-
sponding to consecutive sites around a plaquette. We define
the coupling ratio g = J/Q. For g ! 1, this checker-board
J-Q (CBJQ) model reduces to the usual AFM ordered (at tem-
perature T = 0) Heisenberg model, and for g ! 0 we will
demonstrate a two-fold degenerate PSS. The model does not
have any phase corresponding the SS model for large J 0/J ,

Pij =
1
4 � Si · Sj

Do we get a PSS phase, and what kind of phase transition?
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0

max

FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters

D
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X

x,y

(�1)xS
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· S
x+1,y, (5a)

D
y

=
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X

x,y

(�1)yS
x,y

· S
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where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
3

2

✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,

C
s

(r) = hS
x,y

· S
x+r

x

,y+r

y

i, (8a)
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· S
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y

)i
� hS

x,y

· S
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where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.

Dimer order parameter
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FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

associated with an IRFP fixed point.

B. Random singlet state in the 2D J-Q model

In this paper we report an unambiguous identifica-
tion and characterization of a 2D RS state with finite
dynamic exponent in a system without geometric frus-
tration. We study a square-lattice Heisenberg antifer-
romagnet with nearest-neighbor exchange J augmented
with certain multi-spin interactions of strength Q (the
J-Q model). The unadulterated translationally invari-
ant model is defined by the Hamiltonian [41, 42]

H = �J
X

hiji

P
ij

�Q
X

hijklmni

P
ij

P
kl

P
mn

, (1)

where P
ij

is the singlet projector for two S = 1/2 spins,

P
ij

=
1

4
� S

i

· S
j

, (2)

hiji indicates nearest-neighbor sites, and the index pairs
ij, kl, and mn in hijklmni are neighbors forming a
horizontal or vertical column, as illustrated in Fig. 1.
The summations are over all pairs and and columns,
and the Hamiltonian respects all the symmetries of the
square lattice, including the 90� rotation symmetry when
J
x

= J
y

= J and Q
x

= Q
y

= Q as we have assumed in
Eq. (1). We will introduce various forms of disorder in
the model, including site dilution and random J and Q
couplings drawn from suitable distributions; detailed def-
initions of the di↵erent cases are presented in Sec. IV.

In the uniform system the Q interactions compete
against the exchange terms J , disfavoring the strong an-
tiferromagnetic (AFM) order present for Q = 0 (the stan-
dard 2D Heisenberg model [46]) by producing correlated
local singlets. The interactions are not frustrated in the
standard (geometric) sense, however, and the model is
amenable to large-scale QMC simulations for all positive
values of the ratio g = Q/J (with J � 0, Q � 0 being
of primary interest) [45]. The ground state has AFM or-
der for g < g

c

, with g
c

⇡ 0.666, and is a spontaneously
dimerized valence-bond solid (VBS) for g > g

c

. In the
VBS phase the Z4 symmetry of four degenerate columnar
dimer patterns is broken.

A columnar VBS state and an AFM–VBS transition is
also realized if the Q-interaction in Eq. (1) is replaced by

a simpler one with only two singlet projectors [43]. How-
ever, the critical coupling ratio g

c

is then much larger,
g ⇡ 22, and the VBS order is much weaker throughout
the phase. Disorder e↵ects on the VBS state are easier to
study with the more extended Q term in Eq. (1), and we
will here demonstrate RS behavior for a significant range
of coupling mean coupling ratios g when either the J or
the Q interactions are random. We expect these disorder
e↵ects to be generic for VBS phases on bipartite lattices.

Before the advent of the J-Q model, VBS physics was
normally associated with geometric frustration, in mod-
els such as the J-J 0 Heisenberg model with nearest- (J)
and next-nearest-neighbor (J 0) couplings. These systems
are not amenable to large-scale QMC studies because of
mixed-sign sampling weigths (the sign problem), except
at the variational level in sampling and optimizing wave
functions [49, 50]. While great progress has been made
in the last several years on density matrix renormaliza-
tion group (DMRG) and Tensor Product State (TNS)
techniques for studying frustrated models (see e.g., the
recent papers [51–53] for applications to the J-J 0 Heisen-
berg model), various convergence issues or limited system
sizes still make it impossible to carry out calculations as
reliable as QMC simulations of sign-problem free models.

The J-Q models exhibit many of the phenomena of
long-standing interest in the context of frustrated quan-
tum magnetism, in particular the AFM-VBS transi-
tion [48], which appears to realize the exotic deconfined
quantum-critical point (DQC) scenario [47]. While it is
presently not clear whether exactly this transition is also
realized in the J-J 0 Heisenberg model [51–53], the phe-
nomenon has attracted a great deal of interest as it is
a prominent example of a quantum phase transition be-
yond the standard Landau-Ginzburg-Wilson framework.
The J-Q models o↵er opportunities to study the emer-
gent degrees of freedom—spinons and gauge fields—that
are the ingredients of the field-theory description of the
DQC point. A very interesting question is how these de-
grees of freedom respond to to quenched disorder, and
this is the topic of the present paper.

By the Imry-Ma argument [57], in the presence of even
an infinitesimal degree of randomness in the local interac-
tions, the VBS can no longer exist as a long-range ordered
state, due to di↵erent columnar dimerization patterns be-
ing energetically favored in di↵erent parts of the lattice.
Thus, the uniform VBS breaks up into domains of dif-
ferent VBS patterns. One such disordered dimer state
has been termed a valence-bond glass (VBG) [58]. It
essentially consists of a random arrangement of short va-
lence bonds and it has been discussed in the experimental
context of the kagome-lattice material herbertshmithites
[8, 9], and also in 3D frustrated spin systems [59, 60]. The
kagome spin S = 1/2 lattice of the herbertshmithites is to
some degree diluted with non-magnetic impurities, and
these also liberate spinons from the singlet ground state
[12]. It was argued that these spinons interact and form a
gapless critical RS state. In this case the spinons can be
regarded as a byproduct of the dilution, and in the orig-

J-Q3 model
Jx=Jy, Qx=Qy

Collect histograms P(Dx,Dy) with
valence-bond basis QMC
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent

L = 12 L = 24

0

max

FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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Even higher symmetries proposed in some scenarios
- SO(5) symmetry for deconfined criticality in SU(2) spin systems
- O(4) symmetry in U(1) (planar) spin systems

Emergent symmetries at quantum critical points

Emergent U(1) symmetry 
of the VBS at the deconfined 
quantum-critical point
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and j on different sublattices is given by
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QMC algorithms using these SU%N& spins in the valence-
bond basis are simple generalizations of the SU%2&
case.16,17,21 Instead of spins ↑ and ↓ for SU%2&, there are N
colors, and, thus, N states of the space-time loops in the loop
algorithm.16 The off-diagonal matrix elements of the singlet
projection operators are 1 /N instead of 1/2, and the overlap
of two valence-bond states is generalized to Nn"−L2/2, where
n" is the number of loops in the transposition graph. Four-
and six-spin terms %3& and %4& are written explicitly using
products of singlet projectors and have obvious generaliza-
tions to SU%N&.

Our results for the SU%3& and SU%4& versions of the J-Q2
model are consistent with continuous AF-VBS critical
points, with no signs of first-order behavior. The critical cou-
plings are qc=0.335%2& and qc=0.082%2& for N=3 and 4,
respectively. Scaling plots giving the critical exponents are
shown in Fig. 3 and numerical values are listed in Table I. As
a function of N, " does not change appreciably, #s increases
slowly, and #d increases significantly. In the N=$ theory
#s=1.3 A VBS exponent #d% %N−1& is expected for N→$
on account of the divergent scaling dimension of monopoles
in the CPN−1 field theory.23 Our results are consistent with
this behavior, #d(%N−1& /5, already for N=2,3 ,4.

We could, in principle, consider still higher N, but with
J&0 the system is always in the VBS state for N=5 and
higher.18,19 A transition could presumably be reached for J

'0, but this causes QMC sign problems. Alternatively, with-
out sign problems, one could use longer-range unfrustrated
interactions to enforce antiferromagnetic correlations.

The dimer order distribution P%Dx ,Dy& can be used to
investigate the VBS order-parameter symmetry.7,18 As shown
in Fig. 4, for large q the robust VBSs in the SU%2& J-Q3
model and the SU%3& and SU%4& versions of the J-Q2 model
result in histograms with clearly visible columnar Z4 features
%i.e., peaks on the Dx and Dy axis, as opposed to 45° rotated
histograms expected for a plaquette state&. However, in the
SU%2& J-Q2 model the histograms are ring shaped for all
system sizes currently accessible, even in the extreme case of
q=1%J=0&. In all cases, we see U%1& symmetric histograms
as the critical point is approached, in agreement with one of
the salient features of deconfined quantum criticality.3

Defining an order parameter sensitive to the symmetry,
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where ( is the angle corresponding to a point %Dx ,Dy&, we
proceed as in Ref. 22 %which deals with a classical system
with a dangerously irrelevant perturbation& to extract the ex-
ponent governing the length scale * of the Z4−U%1& cross-
over %and the spinon confinement&. Z4 features should appear
for L&*, which is predicated3 to scale as **+a4 where + is
the correlation length and a4&1. We analyze D4 assuming
the scaling form;22

D4
2 = L−%1+#d&F4%qL1/a4"& . %13&

This form describes the crossover, as shown in Fig. 5 in two
cases. The values of a4 are listed in Table I. The large error-
bars reflect slow evolution of the VBS angle in the QMC
simulations. It is nevertheless clear that a4&1 %and increas-
ing with N&, reflecting emergent U%1& symmetry due to a

FIG. 3. %Color online& Scaling of the spin and dimer order pa-
rameters of the SU%3& and SU%4& J-Q2 models.

FIG. 4. %Color online& Dimer order distribution P%Dx ,Dy& for
L=32 systems. The left panels are for the J-Q3 model at %a& q
=0.635 and %b& q=0.85, and the right panels are for the SU%3& J-Q2
model at %c& q=0.45 and %d& q=0.65.
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VBS

- Symmetries that are not apparent in a system's Hamiltonian 
- Only seen (emerge) at low energy, large length scales

Discussed recently, e.g., by
- Wang, Nahum, Metlitski, Xu, Senthil, PRX 2017
- Qin, He, You, Xu, Sen, Sandvik, Xu, Meng, PRX 2017
Emergent symmetries may also be manifested approximately at weak 
first-order transitions (close to critical points with emergent symmetries or
approximate such symmetries); Wang et al. PRX 2017
- how close do we have to be?
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

The lattice and interactions are compatible with
- 4 fold degenerate columnar VBS
- 2-fold degenerate PSS state

With valence-bond QMC, collect P(Dx,Dy)

Both can be detected using the dimer order parameter
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zation
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and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters
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where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
3

2

✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,
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where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have

0 0.03 0.06 0.09 0.12

1/L

0

0.05

0.1

0.15

M
2

Q=0.1

Q=0.5

Q=0.7

Q=0.9

Q=2

J/Q=0

FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.
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for di↵erent values of the coupling ratio of the random-Q
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a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D
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). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,
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) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m
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, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m
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, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

Define order parameters with z-spin components in SSE QMC

Expectation:
Us → 1, Up → 0 in AFM phase
Us → 0, Up → 1 in PSS phase

Binder cumulants:

3

for detecting plaquette modulation, and the index q runs over
the low-left corners of the Q plaquettes in Fig. 1. The signs
✓(q) = ±1 corresponds to even or odd plaquette rows.

We will primarily analyze the Binder cumulants,
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U
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(L) = U
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(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g

c

in the thermodynamic limit.
The slopes of the cumulants at g

c

can be used to extract the
correlation length exponents ⌫

s

and ⌫
p

, using the following
definition based on two system sizes, L and bL [16, 34]:
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where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji

(�x
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�x

j

+ �y

i

�y
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+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.
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the two curves graphed versus g cross each other) to define
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parameter) continuous transition. Then one would normally
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first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.
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have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g
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. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
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in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

4

0

0

0

0

0

0

0.205 0.210 0.215 0.220 0.225 0.230
g

0.0

0.2

0.4

0.6

0.8

1.0
UU

Figure 3. Finite-size scaling results for the CPJQ model from SSE simulations at T = 1/L. (a) Spin (solid symbols) and dimer (open symbols)
Binder cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes)
underlie the analysis presented in the other panels. In (b) the crossing g-values of U

s

and U

d

are shown vs 1/L along with cross-points of the
same quantity (U

s

or U
d

) for system sizes L and 2L. The points approach the infinite-size transition point g
c

= 0.2175± 0.0001. The curves
are fits including a single power-law correction / L

�! , where ! is taken as an effective exponent. In (c) the squared order parameters at the
Binder (L, 2L) cross-points are graphed versus 1/L along with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is
shown in (d) for both order parameters, along with line fits. In all panels, error bars are not shown and are typically much smaller than the
symbol size. In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �. The system sizes
in (a) are L = 8 (black), 16 (blue) and 32 (red). In the other panels the analysis is presented as in Fig. 3, with U

xy

$ U

s

and U

z

$ U

d

.

For a point on an O(4) sphere of radius R we have |m
p

| =
(R2 �m2

s

)1/2, and to mimic a finite CPJQ system we include
fluctuations of R. With mean hRi = 1 we take Gaussian fluc-
tuations of standard deviation � and generate the probability
distribution P (m

s

, |m
p

|) using the algorithm in Ref. [39]. Ex-
amples are shown Fig. 5(a). We can see that the projection
from four down to two dimensions leads to an arc shaped dis-
tribution with strongly varying height. We further generate
points on a deformed O(4) sphere, where the fourth compo-
nent (m

p

) is multiplied by a parameter � before normalizing
the vector. Thus, � = 1 is the isotropic O(4) coexistence
point and � < 1 and � > 1 correspond to the AFM and PSS
cases, respectively. Effects of the deformation are shown in
Fig. 5(b), where we have chosen values of both � and � to

closely reproduce the features observed in the CBJQ model
in Fig. 5(c) at selected points as we move across its phase
transition. We take this similarity as further evidence of the
enlarged symmetry. We expect � to decrease with increasing
L, as we do observe in our results for L  96.

Discussion.—We have demonstrated a new kind of symme-
try enhanced quantum phase transition at which AFM and PSS
orders coexist and form the components of an emergent SO(4)
(pseudo)vector. While in principle it cannot be excluded that
the symmetry is only approximate, the fact that the Binder
cumulants of the two order parameters never exhibit any neg-
ative values—the hallmarks of conventional first-order tran-
sitions (including previously studied first-order AFM–VBS
transitions [36])—shows that the length scale at which the
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(pseudo)vector. While in principle it cannot be excluded that
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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�(r)Sz(r), m
p

=
2
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g
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in the thermodynamic limit.
The slopes of the cumulants at g
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can be used to extract the
correlation length exponents ⌫
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and ⌫
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, using the following
definition based on two system sizes, L and bL [16, 34]:
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where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji

(�x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

Analysis of slopes of U gives correlation-length exponent

Both exponent extrapolate to values > d+1 = 3; first-order behavior

Why are there no negative Binder peaks?
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Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range



Conventional first-order case
Staircase J-Q3 model [Sen, Sandvik, PRB 2010]

fashion on the square lattice, as illustrated in Fig. 1!a". This
interaction induces a staggered VBS pattern in which reso-
nating valence bonds leading locally to a different !degener-
ate" VBS pattern are not favored. If such fluctuations are
present they can effectively rotate the coarse-grained angle
of the VBS order parameter !as explained further in the cap-
tion of Fig. 1", which has been explicitly observed in the J-Q
models studied previously.9,10,14 In the DQC scenario, they
are directly responsible for the emergent U!1" symmetry of
the VBS order parameter in the neighborhood of the
transition.2 The absence of this feature in the model studied
here brings it clearly outside the framework of DQC points,
and a numerical confirmation of a different type of transition
is then, indirectly, an additional piece of evidence in favor of
a consistent DQC scenario in which emergent U!1" symme-
try and spinon deconfinement should go hand-in-hand with a
continuous transition.

We here use the stochastic series expansion !SSE" QMC
method with operator-loop updates18 to study the nature of
the Néel-VBS transition in the staggered J-Q3 model. We
perform simulations at a fixed aspect ratio of inverse tem-
perature !J=L, as done previously for the standard J-Q2
model in Refs. 13–15. We study the finite-size scaling prop-
erties of various physical quantities and contrast them with
what is observed at the previously studied putative continu-
ous DQCs.

The rest of the paper is organized in the following way: in
Sec II, we define the model more precisely and present the
results for the staggered magnetization, the corresponding
Binder cumulant, the spin stiffness, and the VBS order pa-

rameter. We also consider the probability distribution of the
VBS order parameter and use it to explicitly demonstrate
phase coexistence. In Sec III, we determine the location of
the critical point by using the crossing of the energies of the
Néel and the VBS phases in the metastable region near the
transition. We state our conclusions and discuss future pros-
pects in Sec IV.

II. MODEL AND ORDER PARAMETERS

We consider the following Hamiltonian:

H = J#
$ij%

Si · S j − Q3 #
$ijklmn%

CijCklCmn, !1"

where Si refers to a S=1 /2 spin at site i on the 2D square
lattice and Cij denotes the singlet pair projection operator,

Cij =
1
4

− Si · S j , !2"

between two nearest neighbors i and j. The Q3 term !where,
in the notation of Ref. 10, the subscript on Q refers to the
number of singlet projectors in the product" is chosen in the
particular manner illustrated in Fig. 1!a", to favor the forma-
tion of the kind of staggered VBS illustrated in Fig. 1!b".
Like the columnar and plaquette VBS, the broken symmetry
of the staggered VBS is Z4. However, this type of VBS is
very different from its columnar or plaquette counterparts
since no local ring exchange of singlets on closed loops &e.g.,
as illustrated in Fig. 1!c" for a simple two-bond resonance' is
possible in the ideal staggered VBS. This makes it highly
unlikely for the existing fluctuations of this kind of VBS to
be associated with an emergent U!1" symmetry, which is a
key characteristic of the DQC transition.2 We will confirm
this with simulation results below.

We have also studied an interaction similar to the six-spin
Q3 term but with only two singlet projectors, on two pairs of
sites separated by one lattice spacing and shifted one step
with respect to each other as in Fig. 1!a". This interaction is
not sufficient for destroying the Néel order, however, unlike
the original J-Q model with the two singlet projectors inside
2"2 plaquettes. In the latter case the resulting VBS in the
extreme case of J=0 is also quite weak9 while adding one
more singlet projector !with the sets of three projectors ar-
ranged in columns" gives a much more robust VBS order.10

To study the Néel-VBS phase transition in the staggered
J-Q3 model, Eq. !1", we measure quantities that are sensitive
to the Néel order and the VBS order, respectively. At a con-
tinuous quantum phase transition, these quantities should
scale with the system size L according to nontrivial critical
exponents while at a first-order transition one would expect
very different exponents related to the dimensionality of the
system as well as particular signatures of coexisting phases
at the transition point. These signatures should apply when
the linear dimension of the system L#$, where $ is the finite
correlation length at the transition.

A. Néel order

The magnetically ordered Néel phase breaks the SU!2"
rotational symmetry of the interaction Hamiltonian H and

i j

k l

m n
a)

c) d)

b)

FIG. 1. !Color online" !a" The interaction term Q3 involving
three bond-singlet projection operators !shown with thicker lines"
on the square lattice. All terms related by lattice translations and
rotations of the shown instance of a product of singlet projectors are
included in the Hamiltonian. Examples of VBS patterns: !b" stag-
gered, !c" columnar, and !d" plaquette. The singlets preferentially
form on the thicker !red" bonds. The arrows in !c" indicate how a
local resonance of a pair of bonds between horizontal and vertical
orientations corresponds to a plaquette in !d". Such resonances cor-
respond to fluctuations of the VBS angle, which is %=n& /2 !n
=0,1 ,2 ,3" for the columnar state and %n& /2+& /4 for the
plaquette state. In the DQC scenario !Ref. 2" they lead to an emer-
gent U!1" symmetry, i.e., a continuous circular-symmetric % as the
transition into the Néel state is approached. The Q3 term favors the
staggered-type VBS !b", where such angular fluctuations should al-
ways be small.
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Q3 VBS

can be characterized by measuring !"ms
z#2$, where ms

z denotes
the z component of staggered magnetization of the system,

ms
z =

1
N%

r
Sz"r#cos"Q · r# "3#

with Q= "! ,!# the wave vector corresponding to the Néel
phase and N=L2. This quantity is diagonal in the Sz basis
used and can be easily measured in the SSE simulations. We
measure the squared quantity !"ms

z#2$, which, due to the spin-
rotational symmetry of the Hamiltonian, is 1/3 of the full
squared staggered magnetization !ms

2$. We show the data for
different system sizes at "J=L near the phase transition in
Fig. 2. As the system size is increased, we observe a jump
developing in !"ms

z#2$ that becomes more abrupt and rapidly
approaches the infinite-volume estimate of the critical point
"Q3 /J#c=1.1933"1# for this model "indicated by the vertical
line in Fig. 2 and other figures#. The value of "Q3 /J#c was
obtained from the crossing of metastable energies of the Néel
and VBS phases of larger systems; see Fig. 7 and later dis-
cussion in Sec. III. This kind of behavior of the Néel order
parameter is already very suggestive of a first-order transi-
tion. Data for systems larger than L=14 are not shown here
because of the extremely long tunneling times between the
coexisting "as we will show below in Sec. II B# Néel and
VBS phases for such sizes in our simulations close to the
phase transition, which makes it very difficult to obtain reli-
able expectation values.

A quantity that is very useful for distinguishing between
first-order and continuous phase transitions is the Binder cu-
mulant U2, defined for an O"3# order parameter as19

U2 =
5
2
&1 −

!"ms
z#4$

3!"ms
z#2$2' . "4#

With the factors used here, U2→1 in the Néel phase and
U2→0 in the magnetically disordered phase "VBS in this
case# when L→#. For a continuous phase transition, the U2

curves for different system sizes intersect at the critical point
"for sufficiently large L# and the value of U2 at the intercept
normally lies in the interval "0,1#.19 This property of the
Binder cumulant is often used to accurately determine the
location of the critical point for continuous phase transitions.
However, for a first-order transition, the Binder cumulant
behaves in a completely different manner that was explained
phenomenologically for classical transitions by Vollmayr et
al.20 For systems exceeding a certain length Lmin($, the
curves show a minimum which becomes more pronounced
as the system size increases. The minimum value of U2→
−# as L→# because of phase coexistence, and the position
of the minimum approaches the transition point in the ther-
modynamic limit. This behavior has been observed in previ-
ous studies of classical first-order phase transitions )for ex-
ample, see Refs. 20 and 21*. Indeed, the Binder cumulant for
the J-Q3 model, graphed in Fig. 3, behaves in a similar man-
ner and strongly points to a first-order phase transition. The
negative minimum is present in the U2 curves for L=6 and
above and becomes deeper and sharper as L increases. Its
location approaches the estimated "Q3 /J#c. The fact that a
minimum in U2 is not at all present for L=4 and is barely
negative for L=6 allows us to estimate that the typical length
scale "the spin-correlation length# at the first-order transition
is approximately in the range $=4–6. We also measure the
second moment spin-correlation length $a defined as

$a =
L

2!+ S"!,!#

S&! +
2!

L
,!' − 1, "5#

where S"q# refers to the spin structure factor at the corre-
sponding wave vector q. We obtain $a(2 close to the critical
point in the magnetically disordered VBS phase. However,
when the spin-correlation length is small, $a can differ from
the true correlation length $ based on the asymptotic decay
of the spin correlations in real space "which is difficult to
extract reliably#.
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FIG. 2. "Color online# The squared staggered magnetization
!"ms

z#2$ shown for different system sizes at inverse temperature "J
=L. The vertical line at "Q3 /J#c=1.1933 is the estimated L→#
transition point from crossings of metastable energy branches "Fig.
7#.
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FIG. 3. "Color online# The Binder cumulant of the staggered
magnetization shown for different system sizes at inverse tempera-
ture "J=L. Note that the minimum of the Binder cumulant is nega-
tive for L%8 and diverges to −# as L→# based on these sizes.
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Binder cumulant of AFM order parameter

CBJQ model seems unusual

using the VBS order parameter. Consider the joint probabil-
ity distribution function P!Dx ,Dy". In the Neel phase, this
function is peaked at !0,0". In the VBS phase, P!Dx ,Dy" is
peaked at !0, !D" and !!D ,0", where D is finite, reflecting
the Z4 degeneracy of the VBS state in a finite lattice. Note
that !Dx ,Dy" is here defined as a single point obtained on the
basis of an equal-time simultaneous measurement of Dx and
Dy, i.e., these operators are not averaged over the imaginary-
time dimension in the simulations. The full distribution can
still of course be accumulated over several imaginary times.

In Fig. 6, we show P!Dx ,Dy" for L=12 and Q3 /J
=1.22,1.23,1.24 for "J=L. The coexistence of the Neel and
the VBS phase is evident from the presence of peaks at both
!0,0" and !!D ,0" , !0, !D" at Q3 /J=1.23 while at Q3 /J
=1.22 !Q3 /J=1.24", the Néel !VBS" phase dominates. Also
note the absence of any U!1" ringlike feature in the distribu-
tion shown in Fig. 6. This should be contrasted with similar
measures of the distribution function in the J-Q models with
columnar VBS states close to the critical point, where the

enlarged U!1" symmetry is very evident.9,10,14 In the original
J-Q model with two singlet projectors, the VBS does not
seem to get pinned to the four Z4 symmetric angles even at
J=0 for the system sizes accessible.9 In the modified J-Q
model with three singlet projectors forming columns,10 the
change in the shape of the VBS order-parameter distribution
from U!1" close to the transition to Z4 deep in the VBS phase
can be clearly observed, however. The enlarged U!1" sym-
metry arises in DQC theory due to the !dangerously" irrel-
evant Z4 symmetry-breaking term at the critical point.2 Away
from the critical point, the symmetry is only approximate but
large system sizes are needed to observe that !i.e., L has to
exceed the length scale # which is larger than the standard
correlation length and determined by the dangerously irrel-
evant operator".

Within the DQC framework, the approximate U!1" sym-
metry near the critical point can be thought of in the follow-
ing manner:2 the dangerously irrelevant Z4 perturbation only
produces a small energy difference between the columnar
and plaquette VBS, which vanishes at the critical point and
gives rise to a corresponding large length scale slightly away
from it within which the magnitude of the VBS order param-
eter is formed but its angle !which can be defined exactly as
we did above in terms of Dx and Dy" is not pinned in any
particular direction. This feature has also been observed in
U!1" symmetric spin models where either a very weak first-
order transition24 or transition with unusual finite-size
scaling25 takes place. However, when the VBS is staggered,
there is no competing solid that is energetically close be-
cause of the absence of local ring exchange moves of the
singlets !or dimers" in the ideal staggered solid. This does
not allow the emergence of an approximate U!1" symmetry
near the transition, for which local fluctuations of the VBS
order parameter are necessary, and puts it outside the frame-
work of DQC points even though the phases have the same
broken symmetries. Note that the value of D2 in the VBS
phase after the discontinuous jump !Fig. 5" is close !
#74%" to that of an ideal staggered solid !D2=0.015625",
which motivates us to classify it as a strongly first-order
transition.

We should point out here that the order-parameter distri-
bution P!ms

z" of the Néel order parameter does not show a
clear peak structure at coexistence because of the spin-
rotational averaging when measuring just one of the three
components of the staggered magnetization. The distribution
is not sharply peaked in the Néel state. In principle one could
measure deviations from the rotationally averaged distribu-
tion expected26 for a single phase but this signal is not as
clear as the one seen above for the VBS order parameter. In
the Binder cumulant this problem is avoided because only
even powers of ms are used and they can be trivially related
to the corresponding powers of ms

z. In principle one could
also measure the x and y components of the staggered struc-
ture factor, and compute the distribution P!$ms$", but since
these are off-diagonal operators in the basis used there are
ambiguities in how to define ms

x and ms
y for a given configu-

ration in which mz
s is also measured.

III. DETERMINATION OF THE TRANSITION POINT

The location of a phase transition in the thermodynamic
limit may be determined by using finite-size scaling argu-
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FIG. 6. !Color online" The probability density P!Dx ,Dy" shown
for L=12 at Q3 /J=1.22,1.23,1.24 !from top to bottom" and "J
=12. The maxima present both at !0,0" and !!D ,0" , !0, !D" at
Q3 /J=1.23 show phase coexistence of the Neel and VBS orders.
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Do we know any phase transition with similar characteristics?
Yes: 3D O(N) models with N=3,4,5,… in their ordered states (T < Tc)

3

for detecting plaquette modulation, and the index q runs over
the low-left corners of the Q plaquettes in Fig. 1. The signs
✓(q) = ±1 corresponds to even or odd plaquette rows.

We will primarily analyze the Binder cumulants,
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!
, (5)

where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g

c

in the thermodynamic limit.
The slopes of the cumulants at g

c

can be used to extract the
correlation length exponents ⌫

s

and ⌫
p

, using the following
definition based on two system sizes, L and bL [16, 34]:

1

⌫
sp

=
1

ln(b)
ln


dU

sp

(g, bL)/dg

dU
sp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji
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�x

j

+ �y

i

�y

j

+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

Example: Classical 3D O(3) (Heisenberg) model with tunable anisotropy

Symmetry changes vs 𝛥: O(2) for 𝛥<1, O(3) for 𝛥=1, Z2 for 𝛥>1
For T<Tc, analyze xy and z order parameters and Binder cumulants

Very similar behaviors as CBJQ model!
But no point of obvious higher symmetry vs g in the CBJQ model…
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Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.
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Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range
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cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U
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crossing points from U
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. The points approach the infinite-size transition point g
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= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.
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Detecting O(4) symmetry in the CBJQ model
- We know that the AFM component has O(3) symmetry
- Need to check only PSS order and one AFM component; P(mz,mp)
- O(4) projected down to a plane - constant density within circle
- Radius fluctuates because of finite size

- Appears that there is an O(4) point (the transition point)
- No sign of conventional AFM, PSS coexistence

O(4)

4

order driven through a point at which the Hamiltonian has a
higher symmetry. As an example, we discuss a deformed 3D
classical Heisenberg O(3) model in its ordered phase, with
nearest neighbor interactions H

ij

= �x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

between unit vectors �
i

on a simple cubic lattice. We could
also consider the 2D S = 1/2 AFM Heisenberg model at
T = 0 with a similar deformation [40]. When � < 1, the
order parameter is U(1) symmetric in the xy plane, while for
Ising anisotropy, � > 1, the symmetry is Z2. At the O(3)
point � = 1, the elementary excitations of the quantum model
change, as the Goldstone modes of the U(1) phase and O(3)
point are gapped out continuously for � > 1. In this sense
we can consider the change in symmetry as a phase transition
with both first-order and continuous characteristics.

We carry out classical Monte Carlo simulations at T�1
=

0.7, close to T�1
c

(�

c

= 1) ⇡ 0.6930, and analyze the xy
and z magnetizations individually. As shown in Fig. 4, be-
haviors very similar to those in the CPJQ model are observed
if we make an analogy between the xy magnetization and the
AFM order parameter on the one hand and the Ising magne-
tization and the PSS order parameter on the other hand. The
Binder cumulants and slopes are defined in ways analogous
to Eqs. (5) and (6). Since T is barely below T

c

, the coexis-
tence values hm2

x

i = hm2
y

i = hm2
z

i in Fig. 4(c) are small. In
Fig. 4(d) we can also see that 1/⌫

xy

approaches the expected
first-order value 3, using a simple line fit, while a proper anal-
ysis of 1/⌫

z

may require larger systems.
In most respects, we see that the O(3) order–order transition

looks in finite-size scaling as a first-order transition, with the
glaring exception of the lack of negative Binder peak. Indeed,
with phase coexistence in the form of a higher symmetry, the
arguments behind the negative peak [37, 38] do not apply.

Emergent O(4) symmetry.—The CBJQ model does not have
any obvious point of enhanced symmetry, but the above re-
sults suggest that the system possesses an emergent symmetry
at g

c

. The most natural scenario is that the O(3) AFM and the
Z2 PSS combine to form O(4) symmetry [35]. To test this, we
use the valence-bond projector QMC method and now define
m

p

with the rotationally invariant operator,

⇧(q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ), (7)

in place of ⇧z

(q) in Eq. (3). We investigate the probability
distribution P (m

z

,m
p

), where the z-component of the AFM
order parameter is given as before by Eq. (3) and both m

z

and m
p

can be generated from a given transition graph [31].
In a state with both AFM and PSS order, the commutator
[m

z

,m
p

] / 1/N , and we can treat m
z

and m
p

as c-numbers.
For the putative O(4) symmetry to be manifest, we further nor-
malize each m

z

and m
p

by factors involving hm2
z

i and hm2
p

i,
as explained in Supplemental Material [42].

For a point on an O(4) sphere of radius R, the projection
onto two components results in a uniform distribution within
a circle of radius R. However, in a finite system we also ex-
pect fluctuations of R, and we therefore compare our CBJQ
results with a distribution obtained from an O(4) sphere with

� = 0.000(a) � = 0.100 � = 0.200

Figure 5. (a) One quadrant of the sampled [41] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 64 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter (m

z

), while the y-axis is the PSS order parameter (m
p

) [42].

mean radius R = 1 and standard deviation �. Examples are
shown Fig. 5. At the transition, the CBJQ distribution is ro-
tation symmetric with radial profile similar to that of the O(4)
sampling with � = 0.2. Inside the phases the distributions are
shifted as expected—deep in the PSS we should eventually,
for L ! 1, obtain a point on the y-axis, and in the AFM
state a line on the x-axis. Further tests of the emergent sym-
metry are presented in Supplemental Material [42].

Discussion.—We have found a first-order quantum phase
transition at which coexisting AFM and PSS order parameters
form an emergent O(4) vector. It is possible that the O(4) sym-
metry is not exact, but reflects the existence of a nearby fixed
point (perhaps outside the model space) at which the higher
symmetry is exact [20, 25, 28]. Then, away from this point,
perturbations break the symmetry above some length scale ⇠0

larger than the correlation length ⇠ [25]. This scenario was
discussed in the context of continuous and weakly first-order
transitions. In the case of the CBJQ model, the observed dis-
continuities are rather large, however. From Fig. 3(c) and as-
suming O(4) symmetry, we have m

s

= h4m2
z

i1/2 ⇡ 0.12,
almost 25% of the maximum (classical) staggered magnetiza-
tion. Moreover, the first-order nature of the transition is appar-
ent even on small lattices, e.g., the flow of 1/⌫

z

in Fig. 3(d).
Thus, we are well above the length scale ⇠ but the scenario
of Ref. [25] would suggests that still L ⌧ ⇠0 ⇠ ⇠1+a, where
the exponent a would have to be rather large in order to give
the clear separation of length scales needed to account for
the observed O(4) behavior. Alternatively, we may speculate
that the emergent symmetry could be exact. In this scenario,
the dominant symmetry breaking field is tuned to zero at the
first-order AFM-PSS transition and higher-order O(4) violat-
ing perturbations are either absent or vanish upon renormal-
ization, by some extension of the DQCP description of the
order parameters or by some more general mechanism. While
emergent O(N ) symmetric multicritical points arising from
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onto two components results in a uniform distribution within
a circle of radius R. However, in a finite system we also ex-
pect fluctuations of R, and we therefore compare our CBJQ
results with a distribution obtained from an O(4) sphere with

g = 0.21600
PSS

(b) g = 0.21745
O(4)

g = 0.22000
AFM

Figure 5. (a) One quadrant of the sampled [41] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 64 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter (m

z

), while the y-axis is the PSS order parameter (m
p

) [42].

mean radius R = 1 and standard deviation �. Examples are
shown Fig. 5. At the transition, the CBJQ distribution is ro-
tation symmetric with radial profile similar to that of the O(4)
sampling with � = 0.2. Inside the phases the distributions are
shifted as expected—deep in the PSS we should eventually,
for L ! 1, obtain a point on the y-axis, and in the AFM
state a line on the x-axis. Further tests of the emergent sym-
metry are presented in Supplemental Material [42].

Discussion.—We have found a first-order quantum phase
transition at which coexisting AFM and PSS order parameters
form an emergent O(4) vector. It is possible that the O(4) sym-
metry is not exact, but reflects the existence of a nearby fixed
point (perhaps outside the model space) at which the higher
symmetry is exact [20, 25, 28]. Then, away from this point,
perturbations break the symmetry above some length scale ⇠0

larger than the correlation length ⇠ [25]. This scenario was
discussed in the context of continuous and weakly first-order
transitions. In the case of the CBJQ model, the observed dis-
continuities are rather large, however. From Fig. 3(c) and as-
suming O(4) symmetry, we have m

s

= h4m2
z

i1/2 ⇡ 0.12,
almost 25% of the maximum (classical) staggered magnetiza-
tion. Moreover, the first-order nature of the transition is appar-
ent even on small lattices, e.g., the flow of 1/⌫

z

in Fig. 3(d).
Thus, we are well above the length scale ⇠ but the scenario
of Ref. [25] would suggests that still L ⌧ ⇠0 ⇠ ⇠1+a, where
the exponent a would have to be rather large in order to give
the clear separation of length scales needed to account for
the observed O(4) behavior. Alternatively, we may speculate
that the emergent symmetry could be exact. In this scenario,
the dominant symmetry breaking field is tuned to zero at the
first-order AFM-PSS transition and higher-order O(4) violat-
ing perturbations are either absent or vanish upon renormal-
ization, by some extension of the DQCP description of the
order parameters or by some more general mechanism. While
emergent O(N ) symmetric multicritical points arising from
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Conclusions
CBJQ model with weak first-order AFM-PSS transition
- new type of symmetry-enhanced first-order transition
- more precise tests of symmetry underway
- may be approximate symmetry, but large length-scale

2

JJ’ JQ
(a) (b)

Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

Future theoretical/computational steps:
Connection to deconfined quantum criticality?
- extended model with QA and QB (on “black” and “white” squares)
- regular J-Q model when QA = QB
- how does the discontinuity vanish when QA → QB?
- weak 3D couplings between layers (quasi-2D)
- etc….

Experiments on SrCu2(BO3)2
- in progress at IOP, Beijing (specific heat under high pressure)

Related on classical 3D loop models (Serna, Nahum, arXiv:1805.03759)
- Z2 deformation of Z4 gives near-O(4) symmetry close to dqcp
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Localized spinons in a disordered square-lattice VBS5

FIG. 2. The statically dimerized J1-J2 Heisenberg model,
with thin black bonds and thick red bonds representing ex-
change couplings Si · Sj of strength J1 and J2, respectively,
between S = 1/2 spins. The A and B sublattices are in-
dicated with solid and open black circles. The larger blue
circles indicate randomly removed sites. For the intact sys-
tem with j2 = J2/J1 larger than a critical value (j2c ≈ 1.91
[54, 77, 78]), the ground state is approximately a product
of singlets on the strong bonds, and when diluted the ’dan-
gling spins’ remaining at the ’broken dimer’ adjacent to each
removed spin constitutes a localized magnetic S = 1/2 mo-
ment.

lar ordering mechanism [17]. However, our results and
arguments suggest that the correlated nature of spinon-
antispinon pairs (and larger complexes of even numbers
of spinons) in the randomized VBS was not taken fully
into account previously. In particular, we argue that a
key missing ingredient in the analysis of bipartite sys-
tems Kimchi et al. [17] is that the VBS domain walls
act as channels of enhanced spinon-spinon interactions
within the groups of even numbers of spinons, thus lead-
ing to stronger than expected tendency to local singlet
formation and no residual AFM ordering.

Though it is not immediately clear whether the RS
phase that we identify and characterize here corresponds
to the same fixed point as the state identified on the
triangular lattice by Kimchi et al. [17], this certainly is
a strong possibility based on symmetry considerations.
Moreover, similar to our results presented here, the ran-
dom state on the triangular lattice does not have infinite
dynamic exponent, but exhibits power-law correlations
in both space and time. We further show that the RS
state can also form in some cases even though the bi-
partite host system is not yet VBS ordered, still in the
AFM state, as long as there are sufficient interactions
(here Q terms) favoring the formation of some local VBS
domains. This role could also be played by standard frus-
trated interactions, and it therefore appears most likely
that the RS state in the disordered J-Q model actually
is the same as those states discussed previously in the
context of a variety of frustrated host systems, including
the ED studies [13–16] and DMRG calculations [19]. In
these numerical works, the physical picture presented for
the nature of the RS state was different, however, with an
emphasis in Refs. 13–16 put on the singlet pairs (Ander-
son localization of singlets) [15] and no reference to the
localized spinons and VBS domains. These are actually
the objects that form the key ingredients in the theory

φ=3π/4

φ=π φ=0

φ=π/2

FIG. 3. Illustration of a spinon forming as a consequence of an
unpairable spin at the nexus of domains walls separating the
four different VBS patterns. The left part shows an example
of short valence bonds forming the four different domains,
with an unpaired spin located where the domains meet. The
right part shows a simplified view, with the angle φ of the
VBS pattern indicated for each domain.

of Ref. 17 and of the further developed mechanisms pro-
posed here for the formation of the RS state even in the
absence of traditional frustration.
In Secs. IV and V we will present QMC results for

the Hamiltonian Eq. (1) with random J and random Q
couplings, as well as for a site site diluted system with no
randomness in the remaining J and Q interactions. For
reference we also present results for the diluted J1-J2
Heisenberg model. To characterize the ground states of
these systems in an unbiased way, we use a ground-state
projector QMC method formulated in the valence-bond
basis [79], and to obtain properties at temperature T > 0
we use the stochastic series expansion (SSE) method [80].
To make the results sections more accessible and concise,
in Sec. III we first outline the physical scenario that arises
out of the many different calculations reported in the
subsequent sections.

III. DOMAIN WALLS AND SPINONS IN THE
DISORDERED VALENCE-BOND SOLID

On the 2D square lattice and with the bipartite na-
ture of a model such as the J-Q model, the main ques-
tion regarding the disordered VBS state is whether the
spinons localizing at each nexus of four domain walls [23]
will form long-range AFM order or some other collective
state with only short-range or algebraic spin-spin cor-
relations. As already discussed in Sec. II B, one might
suspect [17] that AFM order should exist for all values of
g = J/Q, in analogy with the fate of the quantum param-
agnet and Néel–paramagnetic quantum phase transition
in Heisenberg models with static dimerization when spins
are randomly diluted (Fig. 2). This picture neglects im-
portant spatial correlations among the localized spinons,
however, as well as the nature of the VBS domain walls
that connect the spinons.
To understand these spinon correlations, consider first

an individual, localized spinon. As illustrated in Fig. 3,

Spinon
nexus of four domain 
walls, with unpaired spin 
in the core
(Levin, Senthil, 2004,…)
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FIG. 4. Illustration of multi-spinon complexes; a spinon pair
(left), with the spinon and antispinon marked as black and
white circles, respectively, and a quadruplet (right) consisting
of two spinons and two antispinons. Two trivial domains, the
yellow and red circles, are also shown. The color coding of
the VBS domains is as in Fig. 3, and all domain walls are of
the elementary type where the VBS angle twists by π/2.

the four lattice bonds pointing out from the site of an
unpaired spin (the core of the spinon) correspond to the
four different VBS patterns. While a different pattern
can also in principle form, with the bonds rotated by
90◦ relative to those in the figure [23], our simulations
of the J-Q model consistently show the ’star’ pattern at
the spinon (but this local arrangement should not change
the properties of the domain walls discussed in Ref. [23]).
The four bonds and the corresponding extended VBS do-
mains can be associated with angles φ as indicated. Note
that the energetically favored domain walls correspond to
a π/2 phase twist [23], while walls with π phase change
are unstable and break up into two π/2 walls (as shown
explicitly in Ref. [81]). This is the origin of the proper
classification of the symmetry of the VBS as a Z4, or
’clock’ symmetry (as opposed to the full Sn permutation
symmetry if all domain walls were equivalent) [23, 69].
Within a domain wall, the angle φ (properly defined by
coarse graining) changes continuously.
Note that a spinon can be associated with either sub-

lattice A or B, and the way in which the angle φ changes,
increasing or decreasing, when going around the spinon
in a given direction depends on the sublattice. Thus, we
can also refer to the two cases as a spinon and an anti-
spinon (but for convenience we will often just use the
term spinon for both). This classification remains valid
also in the presence of longer valence bonds, as long as
only bonds connecting the two sublattices are allowed.
This is exactly the case with bipartite interactions, where
bonds connecting sites on the same sublattice are always
eliminated when a state written in the valence-bond basis
is time-evolved.
As also stressed in Ref. [17], when starting from the

clean VBS, spinons always have to be introduced in pairs
of spinons and antispinons. When separating the two
members of a pair, domains form such that each spinon
is connected to all four types of domains as in Fig. 3. As
shown in Fig. 4, this leads to a four-stranded confining

string, akin to the (more complicated) quark-confining
strings in quantum chromodynamics [82]. Here we have
not shown the details of the bonds within the domains,
only the colors corresponding to the coding in Fig. 3. As
already mentioned, in principle there will also be valence
bonds of length greater than one lattice spacing, but the
pictures remain valid as long as the probability of longer
bonds decays sufficiently rapidly with the bond length. If
we consider the total-spin singlet ground state, there will
also be a bond connecting the spinon and the antispinon
sites. Such a long bond corresponds to a small gap to
the triplet; vanishing in the limit of large separation. In
the non-random VBS, the spinons can not actually be
far separated in this way, because other spinons can be
excited from the vacuum (the VBS ground state) as the
string energy becomes sufficiently high; thus the confin-
ing strings will break, which again is analogous to the
case of quark confinement.

In a system with random couplings, different VBS an-
gles φ ∈ {0,π/2,π, 3π/2}will be favored in different parts
of the system and the domain size will be governed by
the competition of the energy cost of the domain walls
and the energy gains due to the disorder. In classical
systems, according to the Imry-Ma argument [71], this
always leads to domain formation at T = 0 in dimen-
sionality D < 2, while for D > 2 the uniform state is
stable in the presence of weak disorder. Considering en-
tropy effects, the uniform state is also unstable at T > 0
in D = 2. Similarly one can expect quantum fluctuations
to also always lead to domain formation in systems with
two spatial dimensions at T = 0 [17]. At least for weak
disorder, the domain walls should still be of the π/2-
twist type. In addition to single domains forming with
this phase difference with respect to their surroundings
over the whole length of the boundary, the domain-wall
topology also allows for a different situation if localized
spinons are allowed to form. As in the uniform VBS
state discussed above, spinons forming in a VBS broken
up into domains must also always appear in groups of
an even number—half of the spinons and half of them
antispinons. In Fig. 4, a quadruplet is shown along with
the spinon pair already discussed. It is this inherent cor-
relation among spinons and, importantly, the tendency
to singlet formation within the groups, that we believe
prohibit the formation of AFM order in the random VBS
(which we will show is actually the RS phase) arising out
of the VBS in the J-Q model. The effective interactions
between the spinons should be mediated through the do-
main walls (and we will show explicit evidence for this),
because they have much smaller local mass gaps than the
bulk of the VBS domains (through which interactions be-
tween different spinon groups have to be mediated). We
will also later comment on this picture in the context of
SDRG theory.

According to our findings in Sec. IV, the above de-
scribed disordered VBS is an RS state with mean spin
correlations decaying with distance as r−2. It arises out
of the VBS state in the J-Q model with random cou-

Imry-Ma argument (1D, 2D)
any amount of disorder in a VBS
will cause domain formation
Spinons will form in pairs
What kind of magnetic state forms
from interacting spinons?
1D: RS state forms generically
2D: Controversial
- Our work: RS appears to be stable
- Kimchi, Nahum, Senthil, arXiv:1710.06860: Weak AFM order



Simpler system: site diluted Heisenberg dimer system

Unpaired ‘dangling spin’ moments
form in gapped host system
Effective bipartite interactions

Moments form weak AFM order
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FIG. 2. The statically dimerized J1-J2 Heisenberg model,
with thin black bonds and thick red bonds representing ex-
change couplings Si · Sj of strength J1 and J2, respectively,
between S = 1/2 spins. The A and B sublattices are in-
dicated with solid and open black circles. The larger blue
circles indicate randomly removed sites. For the intact sys-
tem with j2 = J2/J1 larger than a critical value (j2c ≈ 1.91
[54, 77, 78]), the ground state is approximately a product
of singlets on the strong bonds, and when diluted the ’dan-
gling spins’ remaining at the ’broken dimer’ adjacent to each
removed spin constitutes a localized magnetic S = 1/2 mo-
ment.

lar ordering mechanism [17]. However, our results and
arguments suggest that the correlated nature of spinon-
antispinon pairs (and larger complexes of even numbers
of spinons) in the randomized VBS was not taken fully
into account previously. In particular, we argue that a
key missing ingredient in the analysis of bipartite sys-
tems Kimchi et al. [17] is that the VBS domain walls
act as channels of enhanced spinon-spinon interactions
within the groups of even numbers of spinons, thus lead-
ing to stronger than expected tendency to local singlet
formation and no residual AFM ordering.

Though it is not immediately clear whether the RS
phase that we identify and characterize here corresponds
to the same fixed point as the state identified on the
triangular lattice by Kimchi et al. [17], this certainly is
a strong possibility based on symmetry considerations.
Moreover, similar to our results presented here, the ran-
dom state on the triangular lattice does not have infinite
dynamic exponent, but exhibits power-law correlations
in both space and time. We further show that the RS
state can also form in some cases even though the bi-
partite host system is not yet VBS ordered, still in the
AFM state, as long as there are sufficient interactions
(here Q terms) favoring the formation of some local VBS
domains. This role could also be played by standard frus-
trated interactions, and it therefore appears most likely
that the RS state in the disordered J-Q model actually
is the same as those states discussed previously in the
context of a variety of frustrated host systems, including
the ED studies [13–16] and DMRG calculations [19]. In
these numerical works, the physical picture presented for
the nature of the RS state was different, however, with an
emphasis in Refs. 13–16 put on the singlet pairs (Ander-
son localization of singlets) [15] and no reference to the
localized spinons and VBS domains. These are actually
the objects that form the key ingredients in the theory

φ=3π/4

φ=π φ=0

φ=π/2

FIG. 3. Illustration of a spinon forming as a consequence of an
unpairable spin at the nexus of domains walls separating the
four different VBS patterns. The left part shows an example
of short valence bonds forming the four different domains,
with an unpaired spin located where the domains meet. The
right part shows a simplified view, with the angle φ of the
VBS pattern indicated for each domain.

of Ref. 17 and of the further developed mechanisms pro-
posed here for the formation of the RS state even in the
absence of traditional frustration.
In Secs. IV and V we will present QMC results for

the Hamiltonian Eq. (1) with random J and random Q
couplings, as well as for a site site diluted system with no
randomness in the remaining J and Q interactions. For
reference we also present results for the diluted J1-J2
Heisenberg model. To characterize the ground states of
these systems in an unbiased way, we use a ground-state
projector QMC method formulated in the valence-bond
basis [79], and to obtain properties at temperature T > 0
we use the stochastic series expansion (SSE) method [80].
To make the results sections more accessible and concise,
in Sec. III we first outline the physical scenario that arises
out of the many different calculations reported in the
subsequent sections.

III. DOMAIN WALLS AND SPINONS IN THE
DISORDERED VALENCE-BOND SOLID

On the 2D square lattice and with the bipartite na-
ture of a model such as the J-Q model, the main ques-
tion regarding the disordered VBS state is whether the
spinons localizing at each nexus of four domain walls [23]
will form long-range AFM order or some other collective
state with only short-range or algebraic spin-spin cor-
relations. As already discussed in Sec. II B, one might
suspect [17] that AFM order should exist for all values of
g = J/Q, in analogy with the fate of the quantum param-
agnet and Néel–paramagnetic quantum phase transition
in Heisenberg models with static dimerization when spins
are randomly diluted (Fig. 2). This picture neglects im-
portant spatial correlations among the localized spinons,
however, as well as the nature of the VBS domain walls
that connect the spinons.
To understand these spinon correlations, consider first

an individual, localized spinon. As illustrated in Fig. 3,

J1 J2 J2/J1 > 1.91

Is this the faith of the spinons in
the square-lattice disordered VBS?

Kimchi, Nahum, Senthil: Most likely, yes
- frustrated interactions required to induce RS state (unstable to spin glass?)
Our conclusion: AFM-RS transition and RS phase in the J-Q model
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FIG. 6. Transition graphs generated in the S = 1 ground
state of an L = 16 J-Q3 system in the VBS phase (left) and
in the AFM state (right). Here open boundaries are used to
avoid valence bonds crossing the boundaries. The thin red
and blue arches correspond to valence bonds in the bra and
ket state, respectively, while the thicker bonds represent the
spinon strings that terminate at the unpaired spins (arrows
up). Note that in each string (depicted with thicker lines) one
of the unpaired spins is in the bra state and the other one is
in the ket state.

correlation functions,

Cs(r) = ⟨Sx,y · Sx+rx,y+ry ⟩, (8a)

Cd(r) = ⟨(Sx,y · Sx+1,y)(Sx+rx,y+ry · Sx+1+rx,y+ry)⟩
− ⟨Sx,y · Sx+1,y⟩2, (8b)

where we spatially average over the reference coordinates
(x, y) for each disorder sample. In the case of the spin
correlations we will also consider the probability distri-
bution of values without averaging over (x, y) or disorder
realizations. The spin correlations have a staggered sign
(−1)rx+ry , while the sign of the dimer correlator with x
oriented bond as above is (−1)rx (and we take the proper
average with the y-oriented ones). When presenting re-
sults we remove these signs. In Cd(r) it is sometimes
better to use the difference between even and odd dis-
tances instead of removing the squared mean value.

2. Spinon strings

In addition to the physical observables in the singlet
sector discussed above, it is also useful to consider the
lowest state with total spin S = 1, in which some aspects
of spinons can be probed directly. In the valence-bond
basis, an S = 1 state can be expressed with a “broken
bond”, e.g., with one bond replaced by two ↑ spins, one
each on sublattice A and B (or with one bond treated as
a triplet) [86–88]. These unpaired spins will propagate
under the action of the Hamiltonian, and one can charac-
terize their collective nature as bound or unbound, and,
in the latter case, quantify the size of the bound state
[68, 88]. Here we will demonstrate another way to char-
acterize an S = 1 state by simply using the number of
sites involved in the spinon strings formed in the tran-
sition graphs. A string consists of the unpaired spin on
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FIG. 7. (a) Binder cumulant of the J1-J2 model at vacancy
fraction p = 1/32 vs the coupling ratio for different system
sizes. The inset shows the size dependence for j2 = 3 and 5
for both diluted (circles) and intact (triangles) systems. (b)
The size dependence of the squared sublattice magnetization
for several values of the coupling ratio. Error bars are smaller
than the symbol size in all cases.

a given sublattice in the projected bra and the ket state
and a connected set of alternating bra and ket valence
bonds, as illustrated in Fig. 6. As we will see in Sec. IVE,
the mean number of sites in the strings scales very differ-
ently in the AFM and RS states, and this provides a way,
along with other methods, to locate the phase transition
between these two states. In addition, we will also use
the difference in ground state energy between the S = 1
and S = 0 sectors to extract the spin gap. For technical
details on how to carry out the simulations with broken
valence bonds we refer to Refs. 81, 86–88.

B. Site Diluted J1-J2 static-dimer model

We begin our discussion of QMC results with a brief
study of a statically dimerized system, where in the uni-
form system there is a quantum phase transition from
an AFM to a trivial quantum paramagnet due to singlet
formation at the stronger bonds. In the case of the colum-
nar model illustrated in Fig. 2, the critical coupling ratio
j2c ≈ 1.91 [54, 77, 78]. For j2 > j2c, it is well known that
effective S = 1/2 moments localize around diluted sites
in such a system, and that these moments interact with
each other by non-frustrated effective couplings mediated
by the gapped host system [76], thus inducing AFM order
also in the previously quantum-disordered phase. Here
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ing as r−2 [36, 42] (while the typical correlations decay
exponentially) and the entanglement entropy diverging
logarithmically with the system size [39].

IRFPs have been identified also in 2D systems, pri-
marily in transverse-field Ising models [45–47] but also
in experiments on the superconductor–metal transition
in Ga thin films [49]. However, no convincing case of
such a phase or critical point has been reported in 2D
quantum magnets with spin-isotropic interactions, such
as the standard Heisenberg exchange, as far as we are
aware. If an RS state exists in such systems, one would
expect it to have algebraically decaying mean correlation
functions, as in the 1D case, and if the state also cor-
responds to an IRFP the dynamic exponent would pre-
sumably be infinite as well. However, an RS state can
also in principle exist which has finite z, although such a
state corresponding to an RG fixed point at finite disor-
der strength does not exist in random Heisenberg chains.
Finite-disorder fixed points have been obtained in SDRG
calculations on the 2D Heisenberg model with various
types of disorder [32, 33], but it is not clear whether the
SDRG method, by its construction and underlying as-
sumptions, produces the correct fixed point when it does
not flow to infinite disorder.

As mentioned in the Introduction, Sec. I, there are
some experimental indications of 2D disorder-induced
spin liquids with finite z in frustrated quantum mag-
nets, according to interpretations supported by numer-
ical studies of the S = 1/2 Heisenberg antiferromagnet
with random couplings on the triangular and kagome lat-
tices [13–15, 19], and also on the honeycomb lattice with
frustrated (J1-J2) interactions [16]. These may very well
be realizations of an RS state, as proposed. However, a
full characterization of the putative RS ground state and
its low-temperature thermodynamic properties (i.e., the
form of the asymptotic long-distance correlations and the
value of the dynamic exponent) was not possible, because
of the limited lattice sizes accessible to ED [13–16] and
DMRG [19] calculations. The recently developed theory
of the RS state arising out of a VBS on the triangular
lattice [17] contains ingredients not discussed in the con-
text of the numerical works, in particular the role of VBS
domains and localized spinons. It is still likely that the
states discussed within these two approaches are actually
the same finite-z RS state.

Here we consider a class of S = 1/2 quantum spin mod-
els on the 2D square lattice, with no geometric frustration
but with interactions leading to weakened AFM order or
nonmagnetic VBS states on uniform lattices. In systems
with random couplings, the dynamic exponent is finite
and varying throughout the RS phase, which is a clear
indication of a class of finite disorder RG fixed points.
Our results suggest a mechanism of pairing of localized
spinons, which leads to the RS state instead of a weakly
ordered AFM state (which has been regarded as the most
likely state forming in the random VBS in the absence of
frustrated interactions [17]). Importantly, this RS state
in an unfrustrated, bipartite system can be induced also
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FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

in cases where the pure host system is not yet in the VBS
state (though not in the standard Heisenberg model with
random nearest-neighbor couplings [50]), because local
VBS domains are still created in response to the disor-
der. This observation, along with other considerations,
also lends support to a universality scenario that con-
nects our square-lattice RS state directly to the above
mentioned states studied with ED and DMRG in frus-
trated lattices with various host states [13–16, 19] and to
that arising out of the triangular-lattice VBS state [17].

B. Random singlet state in the 2D J-Q model

We study a square-lattice Heisenberg antiferromag-
net with nearest-neighbor exchange J augmented with
certain multi-spin interactions of strength Q (the J-
Q model). The unadulterated translationally invariant
model is defined by the Hamiltonian [51, 52]

H = −J
∑

⟨ij⟩

Pij −Q
∑

⟨ijklmn⟩

PijPklPmn, (1)

where Pij is the singlet projector for two S = 1/2 spins,

Pij =
1

4
− Si · Sj . (2)

In the sums in Eq. (1), ⟨ij⟩ indicates nearest-neighbor
sites, and the index pairs ij, kl, and mn in ⟨ijklmn⟩ are
neighbors forming a horizontal or vertical column, as il-
lustrated in Fig. 1. The summations are over all pairs
and columns, so that the Hamiltonian respects all the
symmetries of the square lattice, including the 90◦ rota-
tion symmetry when Jx = Jy = J and Qx = Qy = Q
as we have assumed in Eq. (1). We will introduce vari-
ous forms of disorder in the model, including site dilution
and random J and Q couplings drawn from suitable dis-
tributions; detailed definitions of the different cases are
presented in Sec. IV.
In the uniform system the Q interactions compete

against the exchange terms J , disfavoring the strong
AFM order present for Q = 0 (the standard 2D Heisen-
berg model [53]) by producing correlated local singlets.
The interactions are not frustrated in the standard (ge-
ometric) sense, however, and the model is amenable to
large-scale QMC simulations for all positive values of the
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ing as r−2 [36, 42] (while the typical correlations decay
exponentially) and the entanglement entropy diverging
logarithmically with the system size [39].

IRFPs have been identified also in 2D systems, pri-
marily in transverse-field Ising models [45–47] but also
in experiments on the superconductor–metal transition
in Ga thin films [49]. However, no convincing case of
such a phase or critical point has been reported in 2D
quantum magnets with spin-isotropic interactions, such
as the standard Heisenberg exchange, as far as we are
aware. If an RS state exists in such systems, one would
expect it to have algebraically decaying mean correlation
functions, as in the 1D case, and if the state also cor-
responds to an IRFP the dynamic exponent would pre-
sumably be infinite as well. However, an RS state can
also in principle exist which has finite z, although such a
state corresponding to an RG fixed point at finite disor-
der strength does not exist in random Heisenberg chains.
Finite-disorder fixed points have been obtained in SDRG
calculations on the 2D Heisenberg model with various
types of disorder [32, 33], but it is not clear whether the
SDRG method, by its construction and underlying as-
sumptions, produces the correct fixed point when it does
not flow to infinite disorder.

As mentioned in the Introduction, Sec. I, there are
some experimental indications of 2D disorder-induced
spin liquids with finite z in frustrated quantum mag-
nets, according to interpretations supported by numer-
ical studies of the S = 1/2 Heisenberg antiferromagnet
with random couplings on the triangular and kagome lat-
tices [13–15, 19], and also on the honeycomb lattice with
frustrated (J1-J2) interactions [16]. These may very well
be realizations of an RS state, as proposed. However, a
full characterization of the putative RS ground state and
its low-temperature thermodynamic properties (i.e., the
form of the asymptotic long-distance correlations and the
value of the dynamic exponent) was not possible, because
of the limited lattice sizes accessible to ED [13–16] and
DMRG [19] calculations. The recently developed theory
of the RS state arising out of a VBS on the triangular
lattice [17] contains ingredients not discussed in the con-
text of the numerical works, in particular the role of VBS
domains and localized spinons. It is still likely that the
states discussed within these two approaches are actually
the same finite-z RS state.

Here we consider a class of S = 1/2 quantum spin mod-
els on the 2D square lattice, with no geometric frustration
but with interactions leading to weakened AFM order or
nonmagnetic VBS states on uniform lattices. In systems
with random couplings, the dynamic exponent is finite
and varying throughout the RS phase, which is a clear
indication of a class of finite disorder RG fixed points.
Our results suggest a mechanism of pairing of localized
spinons, which leads to the RS state instead of a weakly
ordered AFM state (which has been regarded as the most
likely state forming in the random VBS in the absence of
frustrated interactions [17]). Importantly, this RS state
in an unfrustrated, bipartite system can be induced also
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FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

in cases where the pure host system is not yet in the VBS
state (though not in the standard Heisenberg model with
random nearest-neighbor couplings [50]), because local
VBS domains are still created in response to the disor-
der. This observation, along with other considerations,
also lends support to a universality scenario that con-
nects our square-lattice RS state directly to the above
mentioned states studied with ED and DMRG in frus-
trated lattices with various host states [13–16, 19] and to
that arising out of the triangular-lattice VBS state [17].

B. Random singlet state in the 2D J-Q model

We study a square-lattice Heisenberg antiferromag-
net with nearest-neighbor exchange J augmented with
certain multi-spin interactions of strength Q (the J-
Q model). The unadulterated translationally invariant
model is defined by the Hamiltonian [51, 52]

H = −J
∑

⟨ij⟩

Pij −Q
∑

⟨ijklmn⟩

PijPklPmn, (1)

where Pij is the singlet projector for two S = 1/2 spins,

Pij =
1

4
− Si · Sj . (2)

In the sums in Eq. (1), ⟨ij⟩ indicates nearest-neighbor
sites, and the index pairs ij, kl, and mn in ⟨ijklmn⟩ are
neighbors forming a horizontal or vertical column, as il-
lustrated in Fig. 1. The summations are over all pairs
and columns, so that the Hamiltonian respects all the
symmetries of the square lattice, including the 90◦ rota-
tion symmetry when Jx = Jy = J and Qx = Qy = Q
as we have assumed in Eq. (1). We will introduce vari-
ous forms of disorder in the model, including site dilution
and random J and Q couplings drawn from suitable dis-
tributions; detailed definitions of the different cases are
presented in Sec. IV.
In the uniform system the Q interactions compete

against the exchange terms J , disfavoring the strong
AFM order present for Q = 0 (the standard 2D Heisen-
berg model [53]) by producing correlated local singlets.
The interactions are not frustrated in the standard (ge-
ometric) sense, however, and the model is amenable to
large-scale QMC simulations for all positive values of the
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FIG. 5. Schematic ground state phase diagrams of the J-
Q model in the presence of disorder, with Λ on the vertical
axis representing the disorder strength. In the pure models,
Λ = 0, there is a DQC point (red circles) separating the AFM
and VBS phases. The VBS is destroyed, breaking up into do-
mains, for any Λ > 0. In (a), which applies to the model with
site dilution, there is no phase transition vs the coupling ratio
Q/J when Λ > 0, only a cross-over (indicated by the wedge)
between the standard AFM state and a VBG state with finite
VBS domains in which weak AFM order forms among local-
ized effective moments. In (b), which applies to the case of
random coupling constants, there is a true continuous quan-
tum phase transition between the AFM and RS phases for at
least some range of Λ > 0.

plings (either random J or random Q, both of which we
will study, or all random, which we have not considered).
The form of the spin correlation function is, thus, the
same as in the 1D RS phase, and the dimer (bond sin-
glet) correlations decay with a higher power, likely r−4,
which again would be the same as in 1D [42]. Unlike the
1D RS state, but in agreement with the VBG state pro-
posed on the diluted kagome lattice [12] and in the RS
states proposed more recently [13–17], we do not find a
divergent dynamic exponent. By investigating the tem-
perature dependence of the uniform magnetic suscepti-
bility we find z = 2 (T independent susceptibility) at the
AFM–RS phase boundary and z > 2 (power-law diver-
gent susceptibility) inside the RS phase.

In further support of a disordered VBS state with no
AFM order, we also compare the model with random
couplings with a site-diluted J-Q model. Here, like in
the diluted J1-J2 model in Fig. 2, there will be effective
moments associated with the removed sites. Thus, while
there may also be localized correlated spinons associated
with the meeting points of four domain walls, now there
are also moments at random locations and those are not
subject to the strong singlet formation within groups of
spinons. Indeed, in this case we find a VBS broken up
into domains and weak AFM order, and no RS state ex-
ists in the phase diagram.

In Fig. 5 we summarize the two kinds of phase dia-
grams that we find for the J-Q model in the presence
of the different types of disorder discussed in this pa-
per. We expect these phase diagrams to be generic for
disordered 2D quantum magnets that host AFM–VBS
quantum phase transitions in the absence of disorder.
Note the way the AFM–RS phase boundary has been
drawn in Fig. 5 as tilted into the AFM phase, i.e., one
can reach the RS state not only from the VBS phase
of the pure system but also (for some types of disorder)
from the AFM state even when it is quite far from the
AFM–VBS transition. This is interpreted as the ten-
dency to local VBS domain formation being favored by
the disorder. On the square lattice the Heisenberg model
with only nearest-neighbor couplings J , disorder in the
form of random unfrustrated Js does not induce an RS
phase [50], and a critical strength of frustrated interac-
tions is presumably required, like in the other frustrated
systems, to induce it [13–19]. The Q interactions of the
J-Q model explicitly favor local correlated singlets and
apparently mimic the effects of geometrically frustrated
interactions in their ability to generate the RS state.

IV. GROUND STATE PROPERTIES

We here present QMC results for the J-Q model de-
fined in Eq. (1) in the presence of disorder in the form of
random J or random Q. In some cases we use a bimodal
distribution of couplings Jij ∈ {J(1 − ∆), J(1 +∆)} or
Qijklmn ∈ {Q(1 − ∆), Q(1 + ∆)}, with equal probabil-
ity for the two values, and in other cases we consider
uniform distributions with the couplings bounded by the
above values. To contrast random couplings and site di-
lution, we also consider the J-Q model where a given
fraction of the sites, randomly selected, are missing. All
operators in Eq. (1) touching one or several missing sites
are removed from the Hamiltonian. To bench-mark our
calculations for the J-Q model against a case where it is
known that site dilution induces AFM order in a quan-
tum paramagnetic host, we also consider the diluted stat-
ically dimerized Heisenberg model illustrated in Fig. 2.
In all cases, we average QMC results over a large num-
ber of independent realization of the disorder (hundreds
to thousands) on square lattices with N = L × L sites
and periodic boundary conditions.

Below, in Sec. IVA we will first briefly describe the
QMC algorithm used in the ground state calculations
and also introduce the main observable we use to char-
acterize the systems. In the following subsections, we
present results for all the models; the diluted J1-J2 model
in Sec. IVB, the diluted J-Q model in Sec. IVC, and
the random J and random Q systems in Sec. IVD and
Sec. IVE, respectively.
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tum phase transition between the AFM and RS phases for at
least some range of Λ > 0.

plings (either random J or random Q, both of which we
will study, or all random, which we have not considered).
The form of the spin correlation function is, thus, the
same as in the 1D RS phase, and the dimer (bond sin-
glet) correlations decay with a higher power, likely r−4,
which again would be the same as in 1D [42]. Unlike the
1D RS state, but in agreement with the VBG state pro-
posed on the diluted kagome lattice [12] and in the RS
states proposed more recently [13–17], we do not find a
divergent dynamic exponent. By investigating the tem-
perature dependence of the uniform magnetic suscepti-
bility we find z = 2 (T independent susceptibility) at the
AFM–RS phase boundary and z > 2 (power-law diver-
gent susceptibility) inside the RS phase.

In further support of a disordered VBS state with no
AFM order, we also compare the model with random
couplings with a site-diluted J-Q model. Here, like in
the diluted J1-J2 model in Fig. 2, there will be effective
moments associated with the removed sites. Thus, while
there may also be localized correlated spinons associated
with the meeting points of four domain walls, now there
are also moments at random locations and those are not
subject to the strong singlet formation within groups of
spinons. Indeed, in this case we find a VBS broken up
into domains and weak AFM order, and no RS state ex-
ists in the phase diagram.

In Fig. 5 we summarize the two kinds of phase dia-
grams that we find for the J-Q model in the presence
of the different types of disorder discussed in this pa-
per. We expect these phase diagrams to be generic for
disordered 2D quantum magnets that host AFM–VBS
quantum phase transitions in the absence of disorder.
Note the way the AFM–RS phase boundary has been
drawn in Fig. 5 as tilted into the AFM phase, i.e., one
can reach the RS state not only from the VBS phase
of the pure system but also (for some types of disorder)
from the AFM state even when it is quite far from the
AFM–VBS transition. This is interpreted as the ten-
dency to local VBS domain formation being favored by
the disorder. On the square lattice the Heisenberg model
with only nearest-neighbor couplings J , disorder in the
form of random unfrustrated Js does not induce an RS
phase [50], and a critical strength of frustrated interac-
tions is presumably required, like in the other frustrated
systems, to induce it [13–19]. The Q interactions of the
J-Q model explicitly favor local correlated singlets and
apparently mimic the effects of geometrically frustrated
interactions in their ability to generate the RS state.

IV. GROUND STATE PROPERTIES

We here present QMC results for the J-Q model de-
fined in Eq. (1) in the presence of disorder in the form of
random J or random Q. In some cases we use a bimodal
distribution of couplings Jij ∈ {J(1 − ∆), J(1 +∆)} or
Qijklmn ∈ {Q(1 − ∆), Q(1 + ∆)}, with equal probabil-
ity for the two values, and in other cases we consider
uniform distributions with the couplings bounded by the
above values. To contrast random couplings and site di-
lution, we also consider the J-Q model where a given
fraction of the sites, randomly selected, are missing. All
operators in Eq. (1) touching one or several missing sites
are removed from the Hamiltonian. To bench-mark our
calculations for the J-Q model against a case where it is
known that site dilution induces AFM order in a quan-
tum paramagnetic host, we also consider the diluted stat-
ically dimerized Heisenberg model illustrated in Fig. 2.
In all cases, we average QMC results over a large num-
ber of independent realization of the disorder (hundreds
to thousands) on square lattices with N = L × L sites
and periodic boundary conditions.

Below, in Sec. IVA we will first briefly describe the
QMC algorithm used in the ground state calculations
and also introduce the main observable we use to char-
acterize the systems. In the following subsections, we
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FIG. 22. Visualization of the local susceptibility for the same
coupling realization of the random J model for which the
VBS domains are illustrated in Fig. 4. The values of the
susceptibility defined in Eq. (13) have been rescaled so that
the maximum is 1, and the color coding is shown on the bar
on the right side.

VBS domain walls, where spinons should localize. Nat-
urally the sites on which the spinons reside should have
enhanced susceptibility (and note that a single spinon
will be spread out over several sites due to quantum fluc-
tuations). There are also bright regions in Fig. 22 that
cannot be specifically identified as likely spinon locations
in Fig. 9, showing that also other VBS defects can be
associated with small local gaps. It is not possible in
this kind of picture to accurately mark out all the do-
main walls based on the susceptibility map—for this to
work well we should go to a currently intractable limit
where the domains are much larger (thus, requiring large
lattices). However, it is clear from comparing Figs. 9
and 22, that the susceptibility is low in the interiors of
large domains, and that in turn means that the suscep-
tibility of the domain walls is enhanced over that of the
bulk. This supports the notion that the domain walls act
as mediators of spinon-spinon interactions, which should
play an important role in the formation of the RS state.
As mentioned in Ref. 17, although the SDRG proce-

dure [35, 36, 43] on the 2D square lattice normally flows
away from infinite randomness, one cannot exclude a flow
to a finite-randomness fixed point. Such fixed points have
been obtained in SDRG calculations on various bipar-
tite and frustrated 2D Heisenberg models with disorder
[32, 33], but the physical properties of those fixed points
do not appear to correspond to the RS phase discov-
ered here. The key physical ingredients underlying the
RS phase—VBS domains and localized spinons—are un-
likely generated in the SDRG procedure applied to bipar-
tite Heisenberg models, and the ’cluster states’ generated

in the presence of frustration also appear to be quite dif-
ferent. It is furthermore very difficult to apply the SDRG
approach to more complicated interactions like the six-
spin Q terms used here (which are very difficult to deal
with even in 1D systems, though that has been done [42])
since many kinds of effective couplings can be generated
during the decimation process.
It may be more fruitful to consider an SDRG pro-

cess carried out only on the subsystem of the localized
spinons. Though we have not actually carried out such
an RG procedure and it is not clear how to actually for-
mulate the spinon subsystem quantitatively, an intuitive
picture follows from our results and arguments. Because
of the formation of groups of even number of spinons
(half of which are anti-spinons), an explicit spatial cor-
relation exists between spinons and antispinons that will
automatically lead to a reduction of statistical sublattice
imbalance upon course graining, i.e., within a region of
finite length l the relative difference between the number
of spinons and anti-spinons should decrease much faster
as l increases when compared to the case of randomly
located spinons with Gaussian fluctuations in the sublat-
tice imbalance. This statistical effect in combination with
the domain-wall mediated spin interactions, should lead
to singlets gradually “freezing out” one-by-one without
first forming larger moments due to sublattice imbalance.
This picture is very similar to the flow of the SDRG in
the 1D random Heisenberg chain [35, 36], which, how-
ever, leads to z = ∞ instead of the continuously varying
finite dynamic exponent found here.

VII. CONCLUSIONS AND DISCUSSION

Using the J-Q model, we have demonstrated that an
RS phase can be induced by disorder in a quantum spin
system even though all microscopic interactions are bi-
partite, lacking the geometric frustration that so far was
believed to be a necessary ingredient for this type of 2D
state. It appears most likely that the state is the same
one, in the RG sense, as those previously identified in
frustrated systems [13–19], though the lack of definitive
quantitative results of the previous works for, e.g., var-
ious exponents governing power-law behaviors, makes it
difficult to definitely ascertain this at the moment. For
example, it was argued that the low-T susceptibility fol-
lows a Curie form in the frustrated honeycomb Heisen-
berg model in the RS phase [16], while we have here
demonstrated a T−a behavior with varying a < 1 in the
random J-Q model (and a → 0 as the AFM phase is
approached). Clearly ED studies of lattices with only up
to ≈ 20 sites cannot be used to reliably address the de-
tailed form of the divergence, as we have seen even with
much larger systems here. Also in the theory of Kimchi
et al. [17] it was not possible to obtain quantitative values
of most of the exponents pertaining to the RS phase in
the triangular lattice, though we note a more recent work
in which scaling forms for the heat capacity (which we

16

0 0.02 0.04 0.06 0.08 0.1 0.12
1/L

0.0

0.1

0.2

0.3

0.4

0.5

U
M

*

Bimodal Q
Bimodal J
Uniform J 

FIG. 17. Binder cumulants vs the inverse system size at the
(L, 2L) crossing points for systems with bimodal Q and J
distributions as well as a uniform distribution of J from the
range [0, 2]. The line is a collective fit to the data for the
bimodal cases.

dom system only can take the form of a domain-forming
VBS. Thus, it seems very plausible that the same RS
state will also be generated if the host system includes
some frustrated interactions that weaken the AFM order
and favor local formation of VBS domains in a disor-
dered system, instead of the Q terms considered for that
purpose here. Such frustrated disordered systems can
include the Heisenberg model on the triangular lattice,
which is equivalent to the square lattice with half of the
diagonal couplings activated. It would then appear quite
plausible that RS state we have identified here on the
square lattice is actually the same state as that discussed
previously for frustrated systems.

F. Universality of the AFM–RS transition

Given our results presented above, it appears most
likely that the AFM–RS transition is universal and that
the RS phase itself has universal properties, such as the
1/r2 power-law decay of the mean spin correlations (but
we will show in Sec. V that the dynamic exponent is not
universal inside the RS phase but varies continuously—
though it also is universal at the AFM–RS transition).
An often used characteristic of a critical point is the value
of the Binder cumulant. This quantity is universal, in the
sense that it is independent on microscopic details, but,
unlike many other universal quantities, such as critical
exponents, it depends on boundary conditions and as-
pect ratios of the system [90–92]. In the projector QMC
method we effectively take the limit of the time-space
aspect ratio β/L → ∞ and the system geometry is also
the same for both the random Q and random J models.
Thus, we have identical boundary conditions and aspect
ratios, and would expect the same value of the Binder
cumulant at the AFM–RS transition point.
In Fig. 17 we show results for three disorder types for

which we have sufficient data to carry out careful studies
of the scaling of the AFM cumulant at the (L, 2L) cross-

ing points; in addition to the bimodal Q and J cases we
also show results for a continuous distributions of J , with
values drawn uniformly from the range [0, 2]. Remark-
ably, the cumulants for all cases not only appear to flow
to the same point in the limit of infinite size, but even the
leading correction in 1/L seems to be the same (even as
regards the prefactor of the power-law correction). This
correction appears to be almost linear, and we analyze
the data under this assumption, though it is more likely
that the form is L−ω with ω just close to 1. For the
two bimodal distributions all the data fall on the line
as closely as would be statistically expected (with excel-
lent goodness of fit), while for the continuous distribution
we see that the data for the smaller sizes deviate more
significantly, indicating that the higher-order corrections
do depend on the kind of disorder distribution. These
results clearly lend further support to the existence of a
universal AFM–RS critical point, and, therefore, to the
existence of the RS phase.

V. FINITE TEMPERATURE PROPERTIES
AND THE DYNAMIC EXPONENT

Finite temperature properties are useful for extracting
the dynamic exponent z and may be the most direct route
to connect to experiments. We will here consider the
uniform magnetic susceptibility,

χu =
1

TN
⟨m2

z⟩, mz =
N
∑

i=1

Sz
i , (12)

and the local susceptibility defined by the Kubo integral

χloc(r) =

∫ 1/T

0
dτ⟨Sz

r
(τ)Sz

r
(0)⟩, (13)

where Sz
r (τ) is the standard imaginary time-dependent

spin accessible in QMC simulations. We here use the
SSE method and refer to the literature, e.g., Ref. 54, for
further technical information. In this section, we average
the local susceptibility over all the sites r of the system
(as well as over disorder realizations) and call this aver-
aged quantity χloc. In Sec. VI we will show an example
of the spatial dependence of χloc(r) for a fixed disorder
realization.

A. Power-law behaviors

At a quantum critical point of a system such as those
considered in this work, where the magnetization is a
conserved quantity, the susceptibility should scale with
the temperature as [93]

χu ∝ T d/z−1, (14)

where d = 2 in our case. In contrast, the local suscepti-
bility is sensitive to the fluctuations of the non-conserved

Local susceptibility (normalized)
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to form. This cross-over occurs for larger sizes for the
larger Q/J value, which is again similar to the behavior
found for increasing coupling ratio J2/J1 in the J1-J2
model.

D. Random Q model

We next consider randomness in the Q interactions,
with an extreme case of bimodal coupling distribution
where each Q term in Eq. (1) is either absent or present
(with equal probability). Here we take the strength the
present six-spin couplings as 2Q, so that the parameter
Q is the average six-spin coupling. As Q increases, the
effective value of the disorder strength, Λ in Fig. 5(b),
also increases when defined in relation to the constant J
coupling. We will demonstrate a quantum phase tran-
sition between the AFM phase and the phase that we
characterize as an RS phase as the coupling ratio Q/J
increases. We will argue that the phase diagram is of the
type schematically illustrated in Fig. 5(b), though we will
not consider the full phase boundary versus Λ. We will
demonstrate the existence of a quantum critical point
separating the two phases along one path in parameter
space and also characterize the ground state properties
of the RS phase in various ways.

1. VBS domains and apparent lack of AFM order

First, in Fig. 9, we visualize the VBS domains form-
ing in this kind of system for large Q/J , where the pure
system is deep inside the VBS phase. Here we observe
several instances of meeting points of four domain walls,
where spinons are expected to be localized. Note that
the static dimer pattern shown in Fig. 9, which is just a
representation of the nearest-neighbor spin correlations,
can be misleading due to the fact that it does not convey
completely the quantum fluctuations. A thin line or the
absence of any line on a given site implies large fluctua-
tions of the associated spins, as further explained in the
caption of Fig. 9, but the nature of those fluctuations
is not apparent. Later, in Sec. VI, we will also visual-
ize the local spin fluctuations and demonstrate that they
are small within the bulk of VBS domains and large at
regions corresponding to spinons and domain walls. De-
spite possible shortcomings of this type of visualization,
it nevertheless makes clear the typical domain size and
the manner in which domains meet. A notable feature is
that there are mainly domain walls of the type where the
angle φ (Fig. 3) changes by π/2, as would be expected
according to the discussion in Sec. III. Some very short
segments of π domain walls can also be seen, with a line
of bonds oriented perpendicularly to those of the adja-
cent domains located in the gap between those domains.
The π domain walls in a pure system with a two-fold de-
generate VBS are gapless with deconfined spinons [82],
and in a disordered system with a pinned π domain wall

FIG. 9. Visualization of the VBS pattern in the J-Q model
with one realization of random Q couplings and J = 0 on
a periodic 64 × 64 lattice. The colored links visualize the
corresponding correlations ⟨Si ·Sj⟩ between the spins i and j
connected by the link, with the line thickness indicating the
magnitude of the correlation. A given link is drawn only if
it is the strongest link for both spins i and j, and the color
coding corresponds to the convention defined in Fig. 3.

one can expect localized spinons to form pairwise as well.
These spinons can also be regarded as meeting points of
four domains, with two of the domains being extremely
narrow (chain-like). Examples of local VBS patterns in-
dicative of such spinons can also be seen in Fig. 9, in the
form of π phase shifts between the VBS patterns of chain
segments between two domains.

The main question now is whether AFM order is in-
duced among the localized spinons that presumably exist
in the random VBS environment. We again study the
AFM Binder cumulant, Eq. (6), as a function of the Q
interaction. For convenience, to span the full range of in-
teractions, we graph UM versus Q/(J +Q) in Fig. 10(a).
Interestingly, unlike in the diluted models (Figs. 7 and
8), in this case it appears that the cumulants for differ-
ent system sizes develop a common crossing point as L
increases; the standard signal of a quantum phase transi-
tion of the AFM state. Furthermore, as shown in Fig. 10,
for values of Q/J larger than the apparent asymptotic
crossing point, the cumulants decrease steadily toward
zero and there are no indications of any upturn expected
if the state has weak AFM order. One could of course
wonder whether the turning point might occur only for
even larger system sizes, but the very different behaviors
of the crossing points between the diluted models, where
they drift strongly as the system size increases (as shown
in Fig. 7 in the case of the J1-J2 model) suggests that
the phase diagrams really are different.

Strongest bond at each site
- empty if not strongest for both sites
Mechanism of RS state formation
- spinons appear in pairs (not random distribution of spinons)
- domain walls mediate spinon-spinon interactions
- pairing avoids AFM order, instead power-law correlations
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FIG. 6. Transition graphs generated in the S = 1 ground
state of an L = 16 J-Q3 system in the VBS phase (left) and
in the AFM state (right). Here open boundaries are used to
avoid valence bonds crossing the boundaries. The thin red
and blue arches correspond to valence bonds in the bra and
ket state, respectively, while the thicker bonds represent the
spinon strings that terminate at the unpaired spins (arrows
up). Note that in each string (depicted with thicker lines) one
of the unpaired spins is in the bra state and the other one is
in the ket state.

correlation functions,

Cs(r) = ⟨Sx,y · Sx+rx,y+ry ⟩, (8a)

Cd(r) = ⟨(Sx,y · Sx+1,y)(Sx+rx,y+ry · Sx+1+rx,y+ry)⟩
− ⟨Sx,y · Sx+1,y⟩2, (8b)

where we spatially average over the reference coordinates
(x, y) for each disorder sample. In the case of the spin
correlations we will also consider the probability distri-
bution of values without averaging over (x, y) or disorder
realizations. The spin correlations have a staggered sign
(−1)rx+ry , while the sign of the dimer correlator with x
oriented bond as above is (−1)rx (and we take the proper
average with the y-oriented ones). When presenting re-
sults we remove these signs. In Cd(r) it is sometimes
better to use the difference between even and odd dis-
tances instead of removing the squared mean value.

2. Spinon strings

In addition to the physical observables in the singlet
sector discussed above, it is also useful to consider the
lowest state with total spin S = 1, in which some aspects
of spinons can be probed directly. In the valence-bond
basis, an S = 1 state can be expressed with a “broken
bond”, e.g., with one bond replaced by two ↑ spins, one
each on sublattice A and B (or with one bond treated as
a triplet) [86–88]. These unpaired spins will propagate
under the action of the Hamiltonian, and one can charac-
terize their collective nature as bound or unbound, and,
in the latter case, quantify the size of the bound state
[68, 88]. Here we will demonstrate another way to char-
acterize an S = 1 state by simply using the number of
sites involved in the spinon strings formed in the tran-
sition graphs. A string consists of the unpaired spin on
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FIG. 7. (a) Binder cumulant of the J1-J2 model at vacancy
fraction p = 1/32 vs the coupling ratio for different system
sizes. The inset shows the size dependence for j2 = 3 and 5
for both diluted (circles) and intact (triangles) systems. (b)
The size dependence of the squared sublattice magnetization
for several values of the coupling ratio. Error bars are smaller
than the symbol size in all cases.

a given sublattice in the projected bra and the ket state
and a connected set of alternating bra and ket valence
bonds, as illustrated in Fig. 6. As we will see in Sec. IVE,
the mean number of sites in the strings scales very differ-
ently in the AFM and RS states, and this provides a way,
along with other methods, to locate the phase transition
between these two states. In addition, we will also use
the difference in ground state energy between the S = 1
and S = 0 sectors to extract the spin gap. For technical
details on how to carry out the simulations with broken
valence bonds we refer to Refs. 81, 86–88.

B. Site Diluted J1-J2 static-dimer model

We begin our discussion of QMC results with a brief
study of a statically dimerized system, where in the uni-
form system there is a quantum phase transition from
an AFM to a trivial quantum paramagnet due to singlet
formation at the stronger bonds. In the case of the colum-
nar model illustrated in Fig. 2, the critical coupling ratio
j2c ≈ 1.91 [54, 77, 78]. For j2 > j2c, it is well known that
effective S = 1/2 moments localize around diluted sites
in such a system, and that these moments interact with
each other by non-frustrated effective couplings mediated
by the gapped host system [76], thus inducing AFM order
also in the previously quantum-disordered phase. Here

diluted J1-J2
12
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FIG. 10. AFM Binder cumulant of the random Q model.
In (a), results for several different system sizes are graphed
versus the coupling ratio Q/(J + Q), and in (b) results for
three different cases inside the RS phase are graphed vs the
inverse system size along with power-law fits.

2. Existence of a phase transition

The possibility of AFM order for large Q/J in the ran-
dom Q model can be be excluded if we can convincingly
establish the existence of a quantum critical point where
the AFM order parameter and related quantities exhibit
scaling. To this end, we will analyze the drift of the cu-
mulant crossing points, and also consider an alternative
way of locating the critical point.

As discussed in Sec. IVA, QMC simulations in the
valence-bond basis allow also for studies of the lowest
triplet state, which is associated with strings representing
spinons in the sampled transition graphs (see Fig. 6). In
an AFM state one can expect the spinon strings to cover
a finite fraction of the system (and then the spinons are
not well-defined particles [88]). We therefore define the
string fraction λ as the mean fraction of sites covered by
one of the spinon strings. In Fig. 11 we demonstrate that
indeed λ approaches a constant when L increases inside
the AFM phase, while in the RS phase λ ∝ L−1. We
do not have a rigorous explanation for the latter behav-
ior, but it appears to be a very robust feature of the RS
phase. Superficially, it would seem to indicate that the
spinons are not completely localized but involve of the
order of L spins. However, it should be noted that many
spinons can be involved in forming the lowest total spin
triplet, and the spinon strings will migrate during the
simulations between all of them. The mean string frac-
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FIG. 11. Finite-size scaling properties of the string fraction
λ of the random Q model in the AFM state, at Q/(J +Q) =
0.2, and deep in the RS phase, at Q/(J + Q) = 1. In (a)
λ is scaled by L to demonstrate λ ∝ L−1 in the RS phase
(the inset showing the results on a more detailed scale), and
the behavior of λ itself in (b) demonstrates the expected size
independent string fraction in the AFM phase.

tion therefore is not really probing an individual local-
ized spinon, and its physical meaning should be further
investigated. Here we just exploit its apparent utility in
locating the AFM–RS transition.

Interestingly, as shown in Fig. 12(a), when graphed
versus the coupling ratio, Lλ for different system sizes
exhibits crossing points. This would not necessarily be
expected when the behavior throughout the RS phase is
λ ∼ L−1, but is still possible due to scaling corrections;
indeed, the fact that the crossings occur at decreasing
angles when L increases and all the curves are close to
each other for large coupling ratios suggest that correc-
tions to the dominant power law are responsible. While
the crossing point is still quite well defined and sugges-
tive of a critical point, the weak size dependence inside
the putative RS phase makes it hard to accurately ex-
tract the crossing points between curves for, e.g., system
sizes L and 2L when L is large. Nevertheless, we have
extracted a few crossing points and compare them with
the crossing points extracted from Binder cumulant data
such as those in Fig. 10. As shown in Fig. 12(b), in both
cases the size dependence is consistent with a flow to a
common point as L → ∞, with power law correction in
1/L. We do not have enough Lλ cross points to be able to
do an accurate independent fit, but since we expect that
both data sets scale to the same critical point we impose

random Q

Behavior suggests no AFM order in the random Q model for large Q
- qualitatively different from diluted systems (convergent cross points)
- suggests an RS phase
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FIG. 12. (a) String fraction multiplied by L vs the coupling
ratio Q/(J + Q) of the random Q model for several system
sizes. In (b), crossing points Q⇤

/J extracted from system size
pairs (L, 2L) of the data sets in (a) are graphed vs the inverse
system size, along with crossing points extracted from the
Binder cumulant U

M

in Fig. 10(a). The curves are fits to a
common constant (the critical value of Q/J) with corrections
/ L

�!, where ! ⇡ 1.3 and 0.9 for the U

M

and �L crossings,
respectively.

this condition in the fit shown in Fig. 12(b). The critical
point so extracted is Q

c

/J ⇡ 1.23. We take this analysis
as strong evidence for a quantum critical point separat-
ing the AFM phase and a non-magnetic phase that we
argue is an RS phase.

3. Correlation functions

Next, we consider the mean spin and dimer correlation
functions. Fig. 13(a) shows the mean spin correlations,
Eq. (8a), at the largest distance on the periodic lattices,
r = L

p
2, versus the system size L. For three di↵erent

coupling ratios inside the RS phase, we find the same be-
havior; a power-law decay corresponding to the distance
dependence C

s

(r) / r�↵ with ↵ = 2. Instead of carrying
out line fits to find ↵, we here just show comparisons with
the form with ↵ = 2, but individual fits in all cases are
also consistent with this value. Interestingly, C(r) / r�2

is also the form at the RS fixed point in 1D [36], though
in that case there are apparently also multiplicative log-
arithmic corrections [42] that we do not find here in 2D.
In the case of the dimer correlations defined in Eq. (8b),
Fig. 13(b) shows results at the longest distance where we
have extracted the relevant connected piece of C

d

(r) as
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FIG. 13. Absolute values of the mean long-distance spin (a)
and dimer (b) correlations at three coupling ratios inside the
RS phase of the random Q model. Results are shown at the
largest distance on the periodic L⇥L lattices. The three lines
in (a) correspond to decay of the form / L

�2 and the line in
(b) shows the form / L

�4.

the di↵erence between even and odd distances r, which
produces less noisy results than the method of subtract-
ing the mean value in Eq. (8b). Here the relative error
bars are still rather large for the larger systems, and we
only show consistency with the form C

d

(r) / r�4, which
again is the same form as in 1D (up to the log corrections
found in 1D) [42].

It is also interesting to investigate the probability dis-
tribution of the values of the correlation functions in the
spatially non-uniform system. Here we again consider
the longest distance r

ij

= L
p
2 on the periodic square

lattice and accumulate in histograms all the individual
spin correlations C

ij

= C(r
ij

) for spins at sites i, j sep-
arated by this distance, with a large number of disorder
realizations used to produce reasonably smooth distri-
butions. In this case it is important to run rather long
simulations for each individual disorder realization, so
that the statistical errors do not influence the distribu-
tions significantly for the smaller instances of C(r

ij

) (in
contrast to the mean disorder-averaged values, where one
only has to make sure that the individual simulations are
equilibrated and the final statistical error is dictated by
the number of disorder instances). There will always be
some problems with large relative errors for the smallest
correlations, and therefore we expect the distributions
presented below to be most reliable at the upper end of
the distribution.

To investigate scaling of the distributions, we first at-
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15

0 0.02 0.04 0.06 0.08 0.1 0.120

0.02

0.04

0.06

0.08

<
D

 2 >

Pure
Random

0 0.02 0.04 0.06 0.08 0.1 0.120

0.02

0.04

0.06

0.08

<
M

2 >

Pure
Random

0 0.02 0.04 0.06 0.08 0.1 0.12
1/L

0
0.2
0.4
0.6
0.8
1

U
M

,D UD
UM

(a)

(b)

(c)

FIG. 15. VBS (a) and AFM (b) order parameters and the
corresponding Binder cumulants (c) versus the inverse system
size for the random J model with bimodal J couplings (50%
each of J = 0 and J = 1) at Q = 2. Results for the pure
model with J = 1 are shown for comparison in (a) and (b).

again showing a non-monotonic behavior with a drop to-
ward zero starting when L is of the order of the typical
VBS domain size. For Q/J = 2 we conclude that the
system is in the RS phase.
To confirm the existence of a critical point separating

the AFM and RS phases, Fig. 16(a) shows scans for sev-
eral system sizes of the Binder cumulants versus Q/J for
the same bimodal J distribution. For UM we again see
crossing points apparently converging toward a critical
point, similar to the behavior in the random Q case in
Fig. 10. The (L, 2L) crossing points are graphed ver-
sus the inverse system sizes in Fig. 16(b), along with the
crossing points of the scaled string fraction Lλ. These
two finite-size estimates of the critical point again ap-
proach Qc from different directions. The data here are
of better statistical quality than the random Q data in
Fig. 10, and with both data sets we can fit the correc-
tions to the infinite-size critical point to the expected
forms ∝ L−ω. Requiring the fits to have the same value
of Qc/J but allowing for different values of the exponent
ω, we obtain Qc/J ≈ 0.72 and the exponents ω ≈ 1.5
(for the cumulant crossings) and 2.3 (for the string quan-
tity). Given the rather small number of points and not
very large system sizes, the exponents should be regarded
as “effective exponents” that are still influenced by ne-
glected higher-order corrections.
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FIG. 16. (a) Binder cumulants vs Q/J for several system
sizes of the bimodal random J model. (b) Crossing points
between cumulants for system sizes (L, 2L) versus 1/L. Cross-
ing points of the size-normalized spinon string coverage ratio
Lλ (similar to those shown in Fig. 12) are also shown. Fits
(the curves shown) to the latter data set and that for the UM

crossing points were carried out using power-law corrections,
∝ L−ω (with ω ≈ 1.5 and 2.3 for the UM and Lλ set, respec-
tively), with the constraint of the same value of the crossing
point Q∗/J when L → ∞.

Fig. 16(a) also shows the behavior of the VBS cumu-
lants. It is clear that the crossing points here do not con-
verge but flow to larger Q/J as the system size increases,
as would be expected when arbitrary weak disorder de-
stroys the VBS phase. The (L, 2L) crossing points are
graphed versus 1/L in Fig. 16(b).

Overall, with the results presented above and many
other cases, we find very similar behaviors for the ran-
dom Q and random J models, indicating that the RS
phase induced by these types of disorder is the same one.
One notable aspect of the specific random J model for
which we have presented results here is that the RS phase
can arise not only out of the VBS phase of the pure model
but also from the AFM state. The critical coupling ex-
tracted in Fig. 16 is at Q/J ≈ 0.72, where the pure model
with all J = 1 Heisenberg couplings is still well inside the
AFM phase (the AFM–VBS transition of the pure sys-
tem taking place at Q/J ≈ 1.50). With the way we have
defined the bimodal coupling strengths with J = 0 and
J = 1 at random locations, we can reach the RS from
the AFM phase simply by removing some fraction of the
J interactions when Q is between 0.72 and 1.50. This
random removal of J couplings enhances the ability of
the Q terms to cause VBS formation, which in the ran-

random J

Transition point Q*(L) detected by AFM cumulant and string-length crossings

Perfect agreement between the two detection methods
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FIG. 6. Transition graphs generated in the S = 1 ground
state of an L = 16 J-Q3 system in the VBS phase (left) and
in the AFM state (right). Here open boundaries are used to
avoid valence bonds crossing the boundaries. The thin red
and blue arches correspond to valence bonds in the bra and
ket state, respectively, while the thicker bonds represent the
spinon strings that terminate at the unpaired spins (arrows
up). Note that in each string (depicted with thicker lines) one
of the unpaired spins is in the bra state and the other one is
in the ket state.

correlation functions,

Cs(r) = ⟨Sx,y · Sx+rx,y+ry ⟩, (8a)

Cd(r) = ⟨(Sx,y · Sx+1,y)(Sx+rx,y+ry · Sx+1+rx,y+ry)⟩
− ⟨Sx,y · Sx+1,y⟩2, (8b)

where we spatially average over the reference coordinates
(x, y) for each disorder sample. In the case of the spin
correlations we will also consider the probability distri-
bution of values without averaging over (x, y) or disorder
realizations. The spin correlations have a staggered sign
(−1)rx+ry , while the sign of the dimer correlator with x
oriented bond as above is (−1)rx (and we take the proper
average with the y-oriented ones). When presenting re-
sults we remove these signs. In Cd(r) it is sometimes
better to use the difference between even and odd dis-
tances instead of removing the squared mean value.

2. Spinon strings

In addition to the physical observables in the singlet
sector discussed above, it is also useful to consider the
lowest state with total spin S = 1, in which some aspects
of spinons can be probed directly. In the valence-bond
basis, an S = 1 state can be expressed with a “broken
bond”, e.g., with one bond replaced by two ↑ spins, one
each on sublattice A and B (or with one bond treated as
a triplet) [86–88]. These unpaired spins will propagate
under the action of the Hamiltonian, and one can charac-
terize their collective nature as bound or unbound, and,
in the latter case, quantify the size of the bound state
[68, 88]. Here we will demonstrate another way to char-
acterize an S = 1 state by simply using the number of
sites involved in the spinon strings formed in the tran-
sition graphs. A string consists of the unpaired spin on
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FIG. 7. (a) Binder cumulant of the J1-J2 model at vacancy
fraction p = 1/32 vs the coupling ratio for different system
sizes. The inset shows the size dependence for j2 = 3 and 5
for both diluted (circles) and intact (triangles) systems. (b)
The size dependence of the squared sublattice magnetization
for several values of the coupling ratio. Error bars are smaller
than the symbol size in all cases.

a given sublattice in the projected bra and the ket state
and a connected set of alternating bra and ket valence
bonds, as illustrated in Fig. 6. As we will see in Sec. IVE,
the mean number of sites in the strings scales very differ-
ently in the AFM and RS states, and this provides a way,
along with other methods, to locate the phase transition
between these two states. In addition, we will also use
the difference in ground state energy between the S = 1
and S = 0 sectors to extract the spin gap. For technical
details on how to carry out the simulations with broken
valence bonds we refer to Refs. 81, 86–88.

B. Site Diluted J1-J2 static-dimer model

We begin our discussion of QMC results with a brief
study of a statically dimerized system, where in the uni-
form system there is a quantum phase transition from
an AFM to a trivial quantum paramagnet due to singlet
formation at the stronger bonds. In the case of the colum-
nar model illustrated in Fig. 2, the critical coupling ratio
j2c ≈ 1.91 [54, 77, 78]. For j2 > j2c, it is well known that
effective S = 1/2 moments localize around diluted sites
in such a system, and that these moments interact with
each other by non-frustrated effective couplings mediated
by the gapped host system [76], thus inducing AFM order
also in the previously quantum-disordered phase. Here
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FIG. 10. AFM Binder cumulant of the random Q model.
In (a), results for several different system sizes are graphed
versus the coupling ratio Q/(J + Q), and in (b) results for
three different cases inside the RS phase are graphed vs the
inverse system size along with power-law fits.

2. Existence of a phase transition

The possibility of AFM order for large Q/J in the ran-
dom Q model can be be excluded if we can convincingly
establish the existence of a quantum critical point where
the AFM order parameter and related quantities exhibit
scaling. To this end, we will analyze the drift of the cu-
mulant crossing points, and also consider an alternative
way of locating the critical point.

As discussed in Sec. IVA, QMC simulations in the
valence-bond basis allow also for studies of the lowest
triplet state, which is associated with strings representing
spinons in the sampled transition graphs (see Fig. 6). In
an AFM state one can expect the spinon strings to cover
a finite fraction of the system (and then the spinons are
not well-defined particles [88]). We therefore define the
string fraction λ as the mean fraction of sites covered by
one of the spinon strings. In Fig. 11 we demonstrate that
indeed λ approaches a constant when L increases inside
the AFM phase, while in the RS phase λ ∝ L−1. We
do not have a rigorous explanation for the latter behav-
ior, but it appears to be a very robust feature of the RS
phase. Superficially, it would seem to indicate that the
spinons are not completely localized but involve of the
order of L spins. However, it should be noted that many
spinons can be involved in forming the lowest total spin
triplet, and the spinon strings will migrate during the
simulations between all of them. The mean string frac-
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FIG. 11. Finite-size scaling properties of the string fraction
λ of the random Q model in the AFM state, at Q/(J +Q) =
0.2, and deep in the RS phase, at Q/(J + Q) = 1. In (a)
λ is scaled by L to demonstrate λ ∝ L−1 in the RS phase
(the inset showing the results on a more detailed scale), and
the behavior of λ itself in (b) demonstrates the expected size
independent string fraction in the AFM phase.

tion therefore is not really probing an individual local-
ized spinon, and its physical meaning should be further
investigated. Here we just exploit its apparent utility in
locating the AFM–RS transition.

Interestingly, as shown in Fig. 12(a), when graphed
versus the coupling ratio, Lλ for different system sizes
exhibits crossing points. This would not necessarily be
expected when the behavior throughout the RS phase is
λ ∼ L−1, but is still possible due to scaling corrections;
indeed, the fact that the crossings occur at decreasing
angles when L increases and all the curves are close to
each other for large coupling ratios suggest that correc-
tions to the dominant power law are responsible. While
the crossing point is still quite well defined and sugges-
tive of a critical point, the weak size dependence inside
the putative RS phase makes it hard to accurately ex-
tract the crossing points between curves for, e.g., system
sizes L and 2L when L is large. Nevertheless, we have
extracted a few crossing points and compare them with
the crossing points extracted from Binder cumulant data
such as those in Fig. 10. As shown in Fig. 12(b), in both
cases the size dependence is consistent with a flow to a
common point as L → ∞, with power law correction in
1/L. We do not have enough Lλ cross points to be able to
do an accurate independent fit, but since we expect that
both data sets scale to the same critical point we impose

Spinon strings in the valence-bond basis
S=1 state represented by N/2 valence bonds, 2 unpaired (up) spins
- overcompleteness → 2 open strings in transition (overlap) graphs

The string fraction 𝜆~constant in AFM state
- Anderson S=1 quantum rotor state
   (extended, not particle-like state)

𝜆~1/N=1/L2 in clean VBS state
- bound spinons → triplon (particle)

In the disordered VBS (random Q or J)
- 𝜆~1/L (empirical property of the RS state)
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FIG. 12. (a) String fraction multiplied by L vs the coupling
ratio Q/(J + Q) of the random Q model for several system
sizes. In (b), crossing points Q∗/J extracted from system size
pairs (L, 2L) of the data sets in (a) are graphed vs the inverse
system size, along with crossing points extracted from the
Binder cumulant UM in Fig. 10(a). The curves are fits to a
common constant (the critical value of Q/J) with corrections
∝ L−ω, where ω ≈ 1.3 and 0.9 for the UM and λL crossings,
respectively.

this condition in the fit shown in Fig. 12(b). The critical
point so extracted is Qc/J ≈ 1.23. We take this analysis
as strong evidence for a quantum critical point separat-
ing the AFM phase and a non-magnetic phase that we
argue is an RS phase.

3. Correlation functions

Next, we consider the mean spin and dimer correlation
functions. Fig. 13(a) shows the mean spin correlations,
Eq. (8a), at the largest distance on the periodic lattices,
r = L

√
2, versus the system size L. For three different

coupling ratios inside the RS phase, we find the same be-
havior; a power-law decay corresponding to the distance
dependence Cs(r) ∝ r−α with α = 2. Instead of carrying
out line fits to find α, we here just show comparisons with
the form with α = 2, but individual fits in all cases are
also consistent with this value. Interestingly, C(r) ∝ r−2

is also the form at the RS fixed point in 1D [36], though
in that case there are apparently also multiplicative log-
arithmic corrections [42] that we do not find here in 2D.
In the case of the dimer correlations defined in Eq. (8b),
Fig. 13(b) shows results at the longest distance where we
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FIG. 13. Absolute values of the mean long-distance spin (a)
and dimer (b) correlations at three coupling ratios inside the
RS phase of the random Q model. Results are shown at the
largest distance on the periodic L×L lattices. The three lines
in (a) correspond to decay of the form ∝ L−2 and the line in
(b) shows the form ∝ L−4.

have extracted the relevant connected piece of Cd(r) as
the difference between even and odd distances r, which
produces less noisy results than the method of subtract-
ing the mean value in Eq. (8b). Here the relative error
bars are still rather large for the larger systems, and we
only show consistency with the form Cd(r) ∝ r−4, which
again is the same form as in 1D (up to the log corrections
found in 1D) [42].

It is also interesting to investigate the probability dis-
tribution of the values of the correlation functions in the
spatially non-uniform system. Here we again consider
the longest distance rij = L

√
2 on the periodic square

lattice and accumulate in histograms all the individual
spin correlations Cij = C(rij) for spins at sites i, j sep-
arated by this distance, with a large number of disorder
realizations used to produce reasonably smooth distri-
butions. In this case it is important to run rather long
simulations for each individual disorder realization, so
that the statistical errors do not influence the distribu-
tions significantly for the smaller instances of C(rij) (in
contrast to the mean disorder-averaged values, where one
only has to make sure that the individual simulations are
equilibrated and the final statistical error is dictated by
the number of disorder instances). There will always be
some problems with large relative errors for the smallest
correlations, and therefore we expect the distributions
presented below to be most reliable at the upper end of
the distribution.

spin and dimer correlations

spin correlations ~1/r2

dimer correlations ~1/r4

�u / T d/z�1
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FIG. 18. Temperature dependence of the uniform susceptibil-
ity of the random Q model for several di↵erent system sizes.
(a) shows results at Q/J = 1.25, close to the estimated AFM–
RS critical point, while the system in (b) is well inside the RS
phase, at Q/J = 2. The horizontal line in (a) corresponds
to the scaling expected if the dynamic exponent z = 2; here
the horizontal value was adjusted to roughly match the low-
T , L = 64 data. The curve in (b) shows a fit of the L = 64
data to the form �u = a+ bT

�c, with the exponent c = 0.64
corresponding to z = 2/(1� c) ⇡ 5.6.

critical order parameter, and this is reflected in the scal-
ing form (see, e.g., Ref. 29)

�
loc

/ T �/(⌫z)�1. (15)

Here �/⌫ should be equal to /2, where  = 2 is the
exponent we have found for the decay of the spin corre-
lations; C

s

(r) / r�. Thus, we expect the asymptotic
form �

loc

/ T 1/z�1, which diverges faster than the uni-
form susceptibility Eq. (14). We also note that, in the al-
ternative (less likely) scenario where  = 4 (Sec. IVD3),
we would have �

loc

/ �
u

.
For the above forms to be valid, we not only have to

reach su�ciently low in T , but also the system size has to
reach the range where there is no longer any size depen-
dence left. This requirement limits the temperatures we
can reach, as demonstrated in Fig. 18 in the case of the
uniform susceptibility of the random Qmodel close to the
critical point and inside the RS phase. We can still see
critical behaviors emerging for a range of temperatures
for the largest system sizes. In Fig. 18(a), at Q/J = 1.25,
which should be close to the AFM–RS transition accord-
ing to the results in Fig. 12, we find very little size de-
pendence, indicating, by Eq. (14), that z = d = 2 at
the transition. The small increase seen at low T before
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FIG. 19. Temperature dependence of the uniform and local
susceptibilities of the Random Q model deep insider the RS
phase, at Q/J = 4 and J/Q = 0. The fits to the �

u

data are of
the same type as in Fig. 18(b), with the exponents c = 0.68
(Q/J = 4) and 0.76 (J/Q = 0). The local susceptibility
appears to not yet have reached its asymptotic low-T form,
Eq. (15), and we do not present any fits to these data.

the finite-size form is most likely due to Q/J not being
exactly at the AFM-RS transition but slightly inside the
RS phase.
Well inside the RS phase, at Q/J = 2 as shown in

Fig. 18(b), we find a clearly divergent low-T behavior of
�
u

. Since the overall magnitude of the susceptibility orig-
inating from the localized spinons is small, when fitting
to the expected power-law form we also include a con-
stant, as a natural leading correction to the asymptotic
divergent form. This works well and the value of the ex-
ponent given by the fit corresponds to z ⇡ 5.6. Thus, we
find that z increases rapidly as the RS phase is entered.
Figure 19 shows results even further inside the RS phase,
along with fits such as those discussed above. Here we
find z ⇡ 6.2 at Q/J = 4 and z ⇡ 8.3 when Q/J ! 1
(J = 0). In the latter case it should be noted the bi-
modal disorder distribution, where half the Q couplings
are set to zero, can lead to isolated spins that contribute
/ 1/T to the susceptibility. However, we avoid this is-
sue by “patching” such rare isolated spins by adding a
randomly chosen Q interaction for each of those spins to
connect them to the rest of the system.
Figure 19 also shows results for the local susceptibility.

Here we do not observe the expected faster divergence
than in �

u

, given by Eq. (15), and it appears that the
asymptotic temperature regime has not yet been reached.

dynamic exponent z

z=d=2 at AFM-RS boundary
z>2 inside RS phase

�u = T�a + b



Experiments
Some ‘disordered spin liquids’ may actually be RS states
Recent example Sr2CuTexW1-xO6
- square-lattice S=1/2 system with
   J1 or J2 randomly on plaquettes 

Antiferromagnetic interactions on simple geometric lattices,
such as triangular, square or tetrahedral, can give rise to
magnetic frustration, because not all interactions between

neighboring spins can be satisfied. These frustrated magnets have
been widely studied in the search for exotic ground states such as
quantum spin liquid (QSL) and quantum spin ice1. The square
lattice has been of special interest due to its connection to high-
temperature superconductivity2. Frustrated magnetism on a
square lattice can be described using the spin-1/2 Heisenberg
square-lattice model (J1–J2 model). This model has two interac-
tions: nearest-neighbor interaction J1 along the side of the square
and next-nearest-neighbor interaction J2 along the diagonal of the
square (Fig. 1a). The J1–J2 model has three classical ground states:
ferromagnetic (FM), Néel antiferromagnetic (NAF) and columnar
antiferromagnetic (CAF) order. The Néel order occurs when the
J1 interaction is antiferromagnetic and dominates (J2/J1 « 0.5),
while the columnar order requires a dominant antiferromagnetic
J2 interaction (J2/J1 » 0.5)3.

The nature of the ground state in the highly frustrated region at
the NAF–CAF boundary near J2/J1 ≈ 0.5 is under debate.
Anderson4 famously proposed that a QSL state emerges when
Néel order is frustrated by including an antiferromagnetic J2
interaction. Quantum spin liquids are highly entangled states, in
which spins remain dynamic even at absolute zero1, 5. Experi-
mental QSL candidates are known with several different structure
types6–11, typically Kagomé lattices, but a square-lattice QSL has
not been realized. The other ground state suggested for the J2/J1 ≈
0.5 region is a valence bond solid12–14, in which spins form dimer
or plaquette singlets with a static pattern. Despite these theore-
tical predictions for the square-lattice antiferromagnets, no
experimental evidence of a compound in the J2/J1 ≈ 0.5 region
exists.

Isostructural A2B’B”O6 double perovskite antiferromagnets
Sr2CuTeO6 and Sr2CuWO6, where A= Sr2+, B’= Cu2+ and B”
= Te6+/W6+ (Fig. 1b), are well described by the J1–J2 model15–20.
A Jahn–Teller distortion and an accompanying orbital ordering
result in a square lattice of Cu2+ (S= 1/2) ions with highly two-
dimensional magnetic interactions15, 21. The two B” cations, Te6+

and W6+, have nearly the same size22, and thus the bond dis-
tances and angles in Sr2CuTeO6 and Sr2CuWO6 are very

similar21. Nevertheless, the diamagnetic B” cation has a sig-
nificant effect on the magnetic properties. Recent neutron scat-
tering studies have revealed NAF ordering at TN= 29 K with J1=
−7.18 and J2=−0.21 meV (J2/J1= 0.03) for Sr2CuTeO6, whereas
Sr2CuWO6 has CAF ordering at TN= 24 K with J1= –1.2 and J2
= –9.5 meV (J2/J1= 7.92)18, 19, 23, 24 (Fig. 1c). This dramatic
change in exchange interactions is driven by differences in orbital
hybridization. In Sr2CuWO6, the dominant 180°
Cu–O–W–O–Cu J2 exchange pathway is enabled by significant W
5d0–O 2p hybridization19, 25. In contrast, the filled 4d10 states in
Sr2CuTeO6 are core-like and do not hybridize18, 25, resulting in a
weak J2. The origin of the dominant 90° J1 interaction is under
debate: Babkevich et al.18 proposed a Cu–O–O–Cu exchange
pathway without a contribution from Te, whereas Xu et al.25

proposed that some Te 5p–O 2p hybridization does occur
affecting the J1 interaction. Since Sr2CuTeO6 has a dominant
J1 interaction and Sr2CuWO6 a dominant J2, it is natural to
ask whether the J2/J1 ≈ 0.5 region could be reached by making a
Sr2Cu(Te1-xWx)O6 solid solution.

Recently, Zhu et al.26 showed that Te6+–W6+ (d10–d0) cation
mixing can be used to tune the magnetic ground state of
Cr3+ (S= 3/2) inverse trirutiles Cr2TeO6 and Cr2WO6. Similar to
Sr2CuWO6, W 5d0–O 2p hybridization in Cr2WO6 allows an
exchange pathway not observed in Cr2TeO6, resulting in different
magnetic structures for the two compounds. Magnetic interac-
tions can be tuned by making a Cr2(Te1-xWx)O6 solid solution; a
change in magnetic structure occurs at x= 0.7. Differences in the
magnetic properties of isostructural d10 and d0 compounds have
also been observed in perovskite-like Ni2+ (S= 1)27, 28 and Os6+

(S= 1)29 compounds.
Here we show that the magnetic ground state of a spin-1/2

square-lattice antiferromagnet can be tuned by d10–d0 cation mix-
ing. In the solid solution Sr2Cu(Te0.5W0.5)O6 spins remain entirely
dynamic down to 19mK. This represents a suppression of TN by at
least three orders of magnitude compared to the antiferromagnetic
parent phases. Moreover, the magnetic specific heat shows T-linear
behavior at low temperatures, despite the material itself being an
insulator. These results indicate a spin-liquid-like ground state. A
special property of Sr2Cu(Te0.5W0.5)O6 is the high amount of
quenched disorder in the magnetic interactions.
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Fig. 1 Spin-1/2 Heisenberg square-lattice model in Sr2CuTeO6 and Sr2CuWO6. a Phase diagram of the J1–J2 square-lattice model. J1 is the nearest-neighbor
interaction and J2 the next-nearest-neighbor interaction. The classical ground states are ferromagnetic (FM), Néel antiferromagnetic (NAF) and columnar
antiferromagnetic (CAF) ordering. The highly frustrated J2/J1 ≈ 0.5 and J2/J1 ≈ –0.5 regions are located at the NAF–CAF and CAF–FM boundaries,
respectively. b The double perovskite structure of Sr2CuTeO6 and Sr2CuWO6. Sr, Cu, B” (Te/W) and O are represented by green, blue, dark yellow and red
spheres, respectively. The blue (dark yellow) octahedra represent CuO6 (B”O6). c The Néel antiferromagnetic structure of Sr2CuTeO6 and the columnar
antiferromagnetic structure of Sr2CuWO6 with the view down the c-axis. The dominant antiferromagnetic interactions are shown
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Susceptibility divergence for x=0.5 may be sign of RS (exponent?)

Results
Crystal structure. Polycrystalline samples of Sr2Cu(Te0.5W0.5)O6,
Sr2CuTeO6 and Sr2CuWO6 with crystallite size in the micrometer
range were synthesized via a conventional solid state reaction.
Sample color ranged from light green to yellow, indicating that the
materials are insulating. This was confirmed with a room-
temperature four-probe electrical conductivity measurement. Xray
diffraction analysis found the samples to be of high quality with a
trace SrWO4 impurity in Sr2Cu(Te0.5W0.5)O6 and Sr2CuWO6; the
relatively stable SrWO4 is a common impurity in Sr2CuWO6

15,21.
Sr2Cu(Te0.5W0.5)O6 retains the I4/m double perovskite structure of
the parent phases with little difference in lattice parameters or
bond distances; Rietveld refinement results are presented in Sup-
plementary Fig. 1 and Supplementary Table 1. Cation order with
respect to B’ (Cu2+) and B” (Te6+/W6+) sites is complete within
experimental accuracy, but tellurium and tungsten are randomly
distributed on the B” site. This results in quenched disorder in the
J1 and J2 interactions between the Cu2+ ions.

Magnetic properties. Magnetic properties of Sr2Cu(Te0.5W0.5)O6,
Sr2CuTeO6 and Sr2CuWO6 are summarized in Table 1. DC
magnetic susceptibilities as a function of temperature are pre-
sented in Fig. 2. The zero-field cooled (ZFC) and field cooled (FC)
curves fully overlap in all samples, and therefore we present only
the ZFC results. The magnetic susceptibilities of Sr2CuTeO6 and

Sr2CuWO6 do not feature a cusp at TN. Instead, in all three
compounds we observe a broad maximum in the susceptibility,
which is a common feature of two-dimensional magnets and QSL
candidates5. This maximum can be characterized by two para-
meters: its position Tmax and height χmax. In the frustrated region
of the square-lattice model near J2/J1 ≈ 0.5 Tmax is predicted to be
lower than in either the NAF (J2/J1 « 0.5) or CAF (J2/J1 » 0.5)
regions30,31. Our magnetic data are consistent with this theore-
tical prediction: Tmax in Sr2Cu(Te0.5W0.5)O6 shifts to a lower
temperature than in Sr2CuTeO6 or Sr2CuWO6. This would place
Sr2Cu(Te0.5W0.5)O6 close to the highly frustrated region, although
the structural disorder present in Sr2Cu(Te0.5W0.5)O6 is not
included in the theoretical model. In the related solid solution
series Sr2Cu(W1-xMox)O6, where both end members have a
dominating J2 interaction and less frustration is expected,
Tmax depends linearly on composition and never goes below
those of the end members15,17. A Curie tail is observed in
Sr2Cu(Te0.5W0.5)O6 at low temperatures. This is likely to be from
a paramagnetic impurity, which are known to be relatively
common in the end phases15–17,24.

Magnetic susceptibilities were fitted to the Curie–Weiss law
χ= C / (T−Θcw), where C is the Curie constant and Θcw is the
Weiss constant. The inverse susceptibilities deviate from the
linear Curie–Weiss behavior below relatively high temperatures
of ≈ 200 K (inset in Fig. 2). For this reason, we performed the
fitting in the temperature range 250–300 K. The Weiss constant
Θcw gives an indication of the total strength of magnetic
interactions in a material. For Sr2Cu(Te0.5W0.5)O6 we obtain
Θcw=−71 K revealing mainly antiferromagnetic interactions
similar in strength to those in Sr2CuTeO6 (Θcw=−80 K). In
contrast, the antiferromagnetic interactions in Sr2CuWO6 are
significantly stronger with Θcw=−165 K. Effective paramagnetic
moments obtained from the Curie–Weiss fits are essentially the
same for all samples and typical for Cu2+ (Table 1). In DC
susceptibility, the ZFC and FC curves were found to overlap for
all samples, which indicates the lack of a spin glass transition. AC
susceptibility of Sr2Cu(Te0.5W0.5)O6 was measured (Supplemen-
tary Fig. 2) to support this conclusion. No frequency dependent
peak was observed in the real part χ’ (dispersion) of the AC
susceptibility indicating that Sr2Cu(Te0.5W0.5)O6 is not a spin
glass. Moreover, the imaginary part χ” (absorption) remains
practically zero.

Specific heat. Results of specific heat measurements of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6 are shown in
Fig. 3a. Similar to the magnetic susceptibility, TN cannot be simply
determined from the specific heat of Sr2CuTeO6 or Sr2CuWO6 as
no lambda anomalies are observed. Likewise, no lambda anomaly
is seen for Sr2Cu(Te0.5W0.5)O6 down to 2 K. Moreover, we do not
observe a low-temperature maximum typical of spin-gapped sys-
tems such as valence bond solids32,33 or the valence bond glass
Ba2YMoO6

34. The main difference between the compounds is that
the reduced specific heat capacities of Sr2CuTeO6 and Sr2CuWO6
approach zero with decreasing temperature, as is expected for
insulators, whereas the reduced specific heat of Sr2Cu(Te0.5W0.5)
O6 appears to remain finite.

At temperatures below ≈ 10 K, linear behavior is observed in a
Cp/T vs. T2 plot (inset in Fig. 3a). Specific heat in the range 2–10
K was fitted using the function Cp= γT+ βDT3, where γ is the T-
linear electronic term and βD the Debye-like phononic term. The
T-linear γ terms obtained were 54.2(5), 2.2(2) and 0.7(4) mJ/
molK2 for Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6,
respectively. Sr2Cu(Te0.5W0.5)O6 has a notably large γ term for
an insulator with no free electrons. There are two main
possibilities for a significant γ term in an insulator. In a gapless

Table 1 Magnetic and thermodynamic properties of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6

Sr2Cu(Te0.5W0.5)O6 Sr2CuTeO6 Sr2CuWO6

Tmax (K) 52 74 86
χmax (10-3emu/mol) 2.55 2.24 1.55
μeff (μB) 1.87 1.87 1.90
Θcw (K) −71 −80 −165
TN (K) <0.019 2924 2417

k — [½ ½ 0]24 [0 ½ ½]23

f= |Θcw|/TN >3700 ≈3 ≈7
γ (mJ/molK2) 54.2 2.2 0.7
βD (K) 395 381 361
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Fig. 2 Magnetic susceptibility. DC magnetic susceptibility of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6 measured in a 1 T field.
Néel temperatures of Sr2CuTeO6 and Sr2CuWO6 are marked with TN,
whereas the position of the maximum in magnetic susceptibility is marked
with Tmax. Zero-field cooled and field cooled curves fully overlap and only
the former is shown. Inset: Inverse magnetic susceptibility and fits to
Curie–Weiss law
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Conclusions
Found RS phase in unfrustrated 2D system
- not infinite-randomness fixed point (z is finite)

Is the state stable on very large length scales
- could weak AFM order form?

We can not rigorously exclude weak AFM order
- unlikely, in light of well-characterized AFM-RS critical point
- the spinon size diverges at the critical point
- the spinon density vanishes at the critical point

Future work
- further characterize the RS phase (incl dynamics)
- realizations in other models

The RS phase is likely universal, same as in frustrated systems
- properties can be investigated in great detail with QMC
- comparisons with experiments possible, e.g., varying z


