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What's going on at the interface between two topologically ordered phases?

?




Motivations

What's going on at the interface between two topologically ordered phases?
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We consider an interface between (wo non-Abelian quantum Hall states: the Moore-Read state,
supporting Ising anyons, and the k = 2 non-Abelian spin-singlet state, supporting Fibonacei anyons. It
is shown that the interface supports neutral excitations described by a (1 + 1)-dimensional conformal field
theory with a central charge ¢ = 7/10. We discuss effects of the mismatch of the quantum statistical
properties of the quasiholes between the two sides, as reflected by the interface theory.



What's going on at the interface between two topologically ordered phases?

?

Two questions we want to address:

@ Can you build accurate model wavefunctions for the full system
(bulk+interface)?

@ Can we characterize the interface down to the microscopic level?



Fractional Quantum Hall (FQH) model wavefunctions

@ Matrix Product States (MPS) for the FQH model wavefunctions

Building a model state for the Laughlin/Halperin interface

Characterizing the interface



FQH (Abelian) model states




A single electron in 2D and in a L magnetic field B.

Uniform | magnetic field : gauge choice

_ leBI
@ energy scale cyclotron frequency w. = =+,

@ length scale : magnetic length Iz = */|T’73\

1 A 9 x )



Landau levels

In (dimensionless) complex coordinate z = (x + iy)/Ig, and setting
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Familiar form of the Hamiltonian

1
H = hw, (aTa—i— 5)

[a,aT] =1

(n+ 1) Landau level :

En = hw. <n+

Discrete spectrum, large degeneracy
(translation invariance/guiding center).
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Cylinder with perimeter L (we identify y =y + L)

/ ty|wky> = ky’wky>’ ky = T

(x—12 ky)?
212

LLL Vi, (x,y) = eVhve g

Momentum k, and position x are locked :

x ~ 2k, Q

o [8, 9] = il implies that A% = 13p,.

@ localized in X and delocalized in y Density profile of the

o the interorbital distance is 2% /3 LLL orbital Wy, (x, y).



Projection to the LLL : dimensional reduction

Projection to the LLL : x and y no longer commute [X, ] = i/é.
4 dimensional phase space = 2 dimensional phase space
A basis of LLL states

12345678

/rx
looks like a one-dimensional chain
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But !
Physical short range interactions become long range in this description
(distance of order Ig means ~ L/Ig sites).



Fractional Quantum Hall effect

Landau levels (spinless case)

o Partial filling + interaction — FQHE
s . _hn _ N
e Filling factor : v = g = Ne
J R I @ N-body wave function :
2 hw
0| p=2
B A e _ 2 2
LS [ Ihwﬂ V= P(Zl7 "-7ZN)e Z|ZI| /(4IB)
e Im where P is a polynomial.

Equivalently in occupation basis

|\U> = Z C{mi} |m1,...,mN0rb>
{mi}

How to guess |W) ? ED, DMRG,
model wavefunctions, ....
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The mother of all model wavefunctions

The v = 1/3 Laughlin state.

filling fraction v = 1/3 + short range model interaction
= exact ground-state :

_ 12 /a2
W%(Zl, cee ,ZN) = H(z,- — Zj)3 e > lzil* /Al
i<j

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)
First hints of a topological phase :

@ excitations with fractional charge e/3

@ topology dependent ground state degeneracy : 3¢ exact ground states.



Cartoon picture : thin cylinder limit (L < /g)

Lk ke

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin's Hamiltonian — Haldane's exclusion statistics
no more than 1 particle in three orbitals

At filling fraction v = 1/3, we get three possible states

W) =1]---100100100---)
|Wo) =1]---010010010---)
|W3) =[---001001001---)

3-fold degenerate ground state on the cylinder (and torus).



Metallic boundary : massless edge modes

\Uu = Pu(Zl, T 7ZN) H(Zi - ZJ)3
i<j
where P, is any symmetric, homogeneous polynomial.

Cartoon picture: no more than 1 electron in 3 orbitals.
(b)E=1 (dE=2

@ dispersion relation :
E = veAP = veXAN 3
chiral and gapless edge @E=0

@ Number of edge states :

E =0 : 1 state (QE=1 (e)E=2

E =1:1 state

E =2 : 2 states

E =3 : 3 states 3

E =4 : 5 states

E =5: 7 states

(cartoon picture)

- spectrum of a compact chiral boson (R = /3).



Metallic boundary : massless edge modes

v, =P, H —zj

i<j

where P, is any symmetric, homogeneous polynomial.

Cartoon picture: no more than 1 electron in 3 orbitals.

(b)E=1 (dE=2
@ dispersion relation :
E = veAP = veXAN 3
chiral and gapless edge @E=0
@ Number of edge states :
E (E=1 (e)E=2
5 2
4 3,,-5’ x
3 2’——
i 1-7 (cartoon picture)
0 -

! n
spectrum of a compact chiral boson (R = /3).



Model states and CFT

@ Moore and Read : A large set of model wavefunctions can be
written as a CFT correlator (Laughlin, Moore-Read, Read-Rezayi,
Halperin...).

W(zy, - ,zy) = (OpgV(z1) - V(zn))

with V(z) an operator/field in a chiral 1+ 1 CFT and Oy, is the
background charge.
@ Bulk-edge correspondence : The CFT used to describe the (gapped)
bulk is identical to the CFT that describes the (gapless) edge
o Laughlin state :
o V(z) =: exp(iv/m®(z)) :, where ®(z) is a (compact) chiral boson
o (®(21)(2)) = —log (21 — 2)
o (V(z1)---V(zn)) = Hi<j(zi —z)"
e Halperin state : A two-component (compact chiral) boson.



MPS for the FQH model states




Entanglement entropy

partA

Cut the system in two parts A and B
(the boundary has length L)

The entanglement entropy is

Sa=—Tr(palogpa) 45

with pa the reduced density matrix. 3¢ el

For a topological phase : 05 |

Sa~al —7, v =logD 0 5 10 15 20 25 80
LAy

where D is the qua ntum dimension. Entanglement entropy of the v = 1/3 Laughlin state
as a function of the cylinder perimeter L
(N. Regnault)

For v = 1/3 Laughlin : D = /3



Entanglement spectrum

Schmidt decomposition

W) = Zexp(_ga/2) A ) ® B, a)

PA = ZGXP(—ﬁa) ‘A’ a> <A7 al

Entanglement spectrum OES Laughlin N=12, N5=6 on a cylinder L=15
Li and Haldane (2008): 60
spectrum of £ = —log pa 0
(plot & vs momentum)

40
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Matrix Product States

Any state can be written as

W) =" (ar| Al Aol jag) [my, ... ma,,)
{mi}

o {AlM} is a set of x x y matrices
@ (ay, o) encode the boundary conditions for an open system.
The A([lml]g matrices have two types of indices
o [m] |S the phySIC3| indeX (m € {0, 1} for fermions, m € N for bosons, m € {1, |} for spins ...)
@ (a, f3) are the bond indices (auxiliary space), ranging from 1,..., x.

@ The bond dimension Y is of the order of exp Sy
= for 2d gapped phases, it grows exponentially with L.
An exponential improvement over the exp(surface) of ED...



Starting from a model wavefunction given by a CFT correlator

V(z1, - ,zy) = (U|Opc V(21) - V(zn)|v)

and expanding V(z) = )", V_,z", one finds (up to orbital normalization)

1
C(my, mn) = (U] Opc.——=—=VT3 - VT22

SV T Vv

F

This is a site/orbital dependent MPS

e ) = (ul Ob.c.B[’""](n) ... B[m2](2)B[m1](1) V)

with matrices at site/orbital j (including orbital normalization)

BIm(j) =

(V)"




Translation invariant MPS

A relation of the form Bl (j) = U=1BIM(j — 1)U yields

BI™(j) = u=/ B (0)

and then

Blml(n)... BIml(1) = u=" x BI™l(0)u - .- BI™l(0)U

This is a translation invariant MPS, with matrices

Alml — Blml(0)u



Translation invariant MPS on the cylinder

Site independant MPS

BITI() = S (V)" = A= = ()" U

1
v m!

where U is the operator is (Zaletel and Mong (2012))
U= e TH-Vreo
where
@ g is the bosonic zero mode (e~/V¥#° shifts the electric charge by v)

@ H is the CFT cylinder Hamiltonian : H = 2T’TLO
@ V) is the zero mode of V(z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/

Extension to spinfull FQH : V. Crépel et al., PRB 97, 165136 (2018)



Truncation of the auxiliary CFT basis

X is infinite — a truncation scheme is required.

@ The natural cut-off is the total conformal dimension — Py ax.
@ Truncation over the momentum in the OES.
@ In finite size, the truncated MPS becomes exact for P« large enough.

e DMRG : cut-off in £ (remove 70}
the smallest weight of pa).

@ MPS : cut-off in momentum. wr 40 f

Morally equivalent as long as the 2@
ES mimics the chiral edge mode 10}
spectrum (linear dispersion).




Building a model state for the Halperin/Laughlin interface




Let’s look at the following interface

We consider the (bosonic) case interfacing the Halperin (221) and the
Laughlin v = 1/2 phases.

Halperin (221)

Laughlin v =1/2
e Spinful, SU(2) symmetric,

v =v, =1/3. @ Spinless, vy =0, =1/2.

@ e/2 excitations.

@ One U(1) chiral edge mode
(charge).

e e/3 excitations.

e Two U(1) chiral edge modes
(charge and spin).



A microscopic model

Hoos = [ @7 (32 5 palor ()| + a7

G’U/:TTJ/

Use the chemical potential yi4(F) to polarize half of the system.
Laughlin v = 1/2 is the densest polarized zero energy state.

Halperin (221) is the densest unpolarized zero energy state.

The two quantum liquids are sewed together by the interaction.

What shall we observe at the interface 7 A single gapless mode described
by a free chiral boson (Haldane, PRL 94).



MPS and variational Ansatz

o We know the exact MPS for Halperin Bl" and Laughlin AL,

""""" T

e Brutal gluing : (ay|--- Blm-21Blm-al glmol Almil ... | p)

Halperin Matrices Laughlin Matrices

Ny
o Does Blm-11Almol make any sense? T
@ Yes : conformal embedding ! o], N_
@ A careful choice for the electron, bg charge e ®7,
operators.




Density
0.5 I fQ
0.4

OFY — =\ 1/3

< 0.2 A \ \\\
5o =y \
0.1 \ o=\ '
\\a) L=11/p \\b) L =13l \\c) L =150
0.0 :
6 2 2 6 6 ) ) 6 % ) 3 6
(E/EB

@ Translation invariance along the cylinder perimeter.

@ We recover the spin up and down densities in the bulk both on the
Halperin and Laughlin side.

o Finite size effects (with respect to L) quickly vanish.
@ Width of interface ~ 5/g



Topological Entanglement Entropy

-0.3

S
N 0.4 — 10g \/ﬁ
=
)
N Halperin Bulk Laughlin Bulk
|
= -0.5
5% _log /3
- N—
w
-0.6 t——rrrr T
-17.9 -17.5 17.5 17.9
SL‘/ZB

@ We extract the TEE v from the derivative S4 — LO;S4 = —7.

e Good agreement with the predicted values deep in the bulks (-0.549
and -0.347).



Topological Entanglement Entropy

-0.3
=
=
<
0 04
~
58)
~ Halperin Bulk Laughlin Bulk
/L . -« EE Correction L = 114p
= -0.5 - TEE Laughlin: —log v/2
S: _— — TEE Halperin: —log /3
<
wn
-0.6
-17.9 -17.5 -6 -4 -2 0 2 4 6 17.5 17.9
x / 14 B

e Up to a small oscillations (finite size effects more important for
subleading terms), a rather smooth transition between the two bulk
TEE.

@ No sign of the gapless mode (as recently predicted by Santos et al.
arXiv:1803.04418).



Area law at the transition

Does we still satisfy the area law at the interface?

-=-- Result of the Linear Regression 0930
3.04 —# Numerical Evaluation at = 0 T 7
% 0.226
Q
® 0.222
—
8
~
= "
7 -0.35
wn .
P
& -0.40
~
I
= 045
S
=
. . . . — @ 050
10 14 16

12
L/lg

Yes (but hard to spot any deviation with such a limited range).



Characterizing the interface




Extracting ¢ : Levin-Wen cut

a(a)l + a(o)(L — £) +2 /X a(u)du + ¢ log [sin (”f)]}wqw)

Area Law Critical Mode

e K(w) contains corrections to the area law, corner
contributions,...

@ Using a Levin-Wen cut to focus on the critical
contribution.

Sa(t,w) = 2% log [sin (?)] + f(w)

@ To get rid of f(w) (including the TEE), we
compute S4(¢,w) — Sa(L/2,w)




Extracting ¢ : Levin-Wen cut

L =10l Parameters:
L=11g w=2T75(p
L=120g DPrmax=12
Critical Theory

141/ 0.2 04 06 0.8

(/L

0.0 0.2 0.4 0.6 0.8 1.0
¢/L

Fitted central charge ¢ = 0.987(1).




What about the bulk?

Halperin Laughlin

L—t< agk, L—t< 4k
2 2
=, =,
3 3
L B S N S N Zof T
2 3
Q-1 S -l
—4- Halperin Bulk
9 = Fit cpyy = 0.072 9
(< 452%1 —  Critical ¢ = ¢ = 2 Theory (< 4{5‘
02 03 04 05 06 07 08 02 03 04 05 06 07 08
t/L (/L
L—t< 48,
2
—
31
=,
<
Interface =
S -1
—4+  Transition
9 = Fit cpy = 0.987
< 4l —  Chiral ¢ = 1 Theory
221

02 033 04 05 06 07 08



Compactification radius, fractional charge

@ Central charge is only part of the information.
@ Mutual information — full partition function of the CFT but hard to
evaluate.
@ Compactification radius <+ charge of the elementary edge excitation.
@ Directly measure the charge along the edge.
@ Play with the MPS boundary conditions.
27m0%
~ L
<OéL| ...................... ‘OéR>

Halperin edge Laughlin edge

excitations excitations +

interface excitations
T

f
0,

Halperin Matrices Laughlin Matrices



Compactification radius, fractional charge

= Nedge =0
19 — Nedge =2 1/2
2 . Charge Excess
3 18
Q“ 17
~

1/6

—— Charge Excess slope 0.16666
——  Spin Excess slope 0.50000

-4 -2 0 2 4
Nedge

Excitations with a e/6 charge (e/6 = /2 — e/3).
Edge = compact boson with radius R = /6.



Is it a good variational wavefunction?

@ It has all the features that we expect but does it capture the
microscopic model low energy properties?

@ Overlap with ED : 4 1 +9 | particles, 21 orbitals — 0.998 (Hilbert
space dim ~ 2.2 x 10%).

(0,2):0.976 OO e —
I a0 0.1T707)
(1,1) : 0.994 =+ — — = = - 0,2]: 0978
10714
Q 3 Z T
0 1,0 : 1.000 —
) ~ = (0,0) : 1.000
-~
10724
[3,0]: 0.902— —[2:0]: 1000
1034 [ RN ——
-10 5 0 5
Ky

ED with 15 orbitals.

0.0

——1 ———1 ] ——] -
—1
0 1 2 3 1 5
Pedge
MPO L =12.




Fermions : Laughlin v = 1/3 / Halperin (332)

@ No conceptual difference with the bosonic example.

@ Transition from Laughlin v = 1/3 to Halperin (332) at v = 2/5.

@ Experimental relevance : graphene using the valley degree of freedom
(spontaneous polarization at v = 1/3).

—»— Charge Excess slope 0.0666 ~ 1/15

QfSA([. w)

— Critical ¢ = 1 theory

- L=12p
e L=13p

01 06

(/L

0.4 0.6
/L




Conclusion

@ A variational ansatz to describe the interface between the Halperin and
the Laughlin liquids.

@ Microscopic characterization of the interface gapless mode (¢ and R).

@ This scheme can be extended to

o any case where a MPS/PEPS/TN description is known on both sides.
e other sewing approach (e.g. superconductor).
e a more generic approach 7



