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Motivations

What’s going on at the interface between two topologically ordered phases?



Motivations

What’s going on at the interface between two topologically ordered phases?



Motivations

What’s going on at the interface between two topologically ordered phases?

Two questions we want to address:

Can you build accurate model wavefunctions for the full system
(bulk+interface)?

Can we characterize the interface down to the microscopic level?



Outline

Fractional Quantum Hall (FQH) model wavefunctions

Matrix Product States (MPS) for the FQH model wavefunctions

Building a model state for the Laughlin/Halperin interface

Characterizing the interface



FQH (Abelian) model states



A single electron in 2D and in a ⊥ magnetic field B .

Uniform ⊥ magnetic field : gauge choice
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Landau levels

In (dimensionless) complex coordinate z = (x + iy)/lB , and setting
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Familiar form of the Hamiltonian
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[a, a†] = 1

(n + 1)th Landau level :

En = ~ωc

(
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)
Discrete spectrum, large degeneracy
(translation invariance/guiding center).



Cylinder with perimeter L (we identify y ≡ y + L)

Natural gauge choice : ~A = B

(
0
x

)

ty |Ψky 〉 = ky |Ψky 〉, ky =
2πn

L

LLL Ψky (x , y) = e iyky e
− (x−l2Bky )2

2l2
B

Momentum ky and position x are locked :

x ∼ l2Bky

[x̂ , ŷ ] = il2B implies that ~x̂ = l2B p̂y .

localized in x̂ and delocalized in ŷ

the interorbital distance is 2π
L l2B

lB

Density profile of the
LLL orbital Ψky (x , y).



Projection to the LLL : dimensional reduction

Projection to the LLL : x and y no longer commute [x̂ , ŷ ] = i l2B .

4 dimensional phase space ⇒ 2 dimensional phase space

A basis of LLL states

looks like a one-dimensional chain

But !
Physical short range interactions become long range in this description

(distance of order lB means ∼ L/lB sites).



Fractional Quantum Hall effect

Landau levels (spinless case)

Partial filling + interaction → FQHE

Filling factor : ν = hn
eB = N

NΦ

N-body wave function :

Ψ = P(z1, ..., zN)e−
∑
|zi |2/(4l2B)

where P is a polynomial.

Equivalently in occupation basis

|Ψ〉 =
∑
{mi}

c{mi} |m1, ...,mNorb
〉

How to guess |Ψ〉 ? ED, DMRG,
model wavefunctions, ....



The mother of all model wavefunctions

The ν = 1/3 Laughlin state.

filling fraction ν = 1/3 + short range model interaction
⇒ exact ground-state :

Ψ 1
3
(z1, · · · , zN) =

∏
i<j

(zi − zj)
3 e−

∑
i |zi |2/4l2B

The model interaction is the short range part of Coulomb.

Extremely high overlap with Coulomb interaction !
(obtained by exact diagonalization)

First hints of a topological phase :

excitations with fractional charge e/3

topology dependent ground state degeneracy : 3g exact ground states.



Cartoon picture : thin cylinder limit (L� lB)

Very small cylinder perimeter L : LLL orbitals no longer overlap
1d problem

Laughlin’s Hamiltonian → Haldane’s exclusion statistics
no more than 1 particle in three orbitals

At filling fraction ν = 1/3, we get three possible states

|Ψ1〉 = | · · · 1 0 0 1 0 0 1 0 0 · · · 〉
|Ψ2〉 = | · · · 0 1 0 0 1 0 0 1 0 · · · 〉
|Ψ3〉 = | · · · 0 0 1 0 0 1 0 0 1 · · · 〉

3-fold degenerate ground state on the cylinder (and torus).



Metallic boundary : massless edge modes

Ψu = Pu(z1, · · · , zN)
∏
i<j

(zi − zj)
3

where Pu is any symmetric, homogeneous polynomial.

Cartoon picture: no more than 1 electron in 3 orbitals.

dispersion relation :
E = vF∆P = vF

2π
L ∆N

chiral and gapless edge

Number of edge states :

E = 0 : 1 state
E = 1 : 1 state
E = 2 : 2 states
E = 3 : 3 states
E = 4 : 5 states
E = 5 : 7 states
· · ·

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2

(cartoon picture)

spectrum of a compact chiral boson (R =
√

3).
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Model states and CFT

Moore and Read : A large set of model wavefunctions can be
written as a CFT correlator (Laughlin, Moore-Read, Read-Rezayi,
Halperin...).

Ψ(z1, · · · , zN) = 〈ObgV (z1) · · ·V (zN)〉

with V (z) an operator/field in a chiral 1 + 1 CFT and Obg is the
background charge.

Bulk-edge correspondence : The CFT used to describe the (gapped)
bulk is identical to the CFT that describes the (gapless) edge

Laughlin state :

V (z) =: exp(i
√
mΦ(z)) :, where Φ(z) is a (compact) chiral boson

〈Φ(z1)Φ(z2)〉 = − log (z1 − z2)
〈V (z1) · · ·V (zN)〉 =

∏
i<j(zi − zj)

m

Halperin state : A two-component (compact chiral) boson.



MPS for the FQH model states



Entanglement entropy

Cut the system in two parts A and B
(the boundary has length L)

The entanglement entropy is

SA = −Tr(ρA log ρA)

with ρA the reduced density matrix.

For a topological phase :

SA ∼ αL− γ, γ = logD

where D is the quantum dimension.

For ν = 1/3 Laughlin : D =
√

3

Entanglement entropy of the ν = 1/3 Laughlin state
as a function of the cylinder perimeter L

(N. Regnault)



Entanglement spectrum

Schmidt decomposition

|Ψ〉 =
∑
α

exp(−ξα/2) |A, α〉 ⊗ |B, α〉

ρA =
∑
α

exp(−ξα) |A, α〉 〈A, α|

Entanglement spectrum
Li and Haldane (2008):
spectrum of ξ = − log ρA
(plot ξ vs momentum)

⇒ Reproduces the physical
edge spectrum !
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Matrix Product States

Any state can be written as

|Ψ〉 =
∑
{mi}

〈αL|A[m1]...A[mNorb
] |αR〉 |m1, ...,mNorb

〉

{A[m]} is a set of χ× χ matrices

(αl , αr ) encode the boundary conditions for an open system.

The A
[m]
α,β matrices have two types of indices

[m] is the physical index (m ∈ {0, 1} for fermions, m ∈ N for bosons, m ∈ {↑, ↓} for spins ...)

(α, β) are the bond indices (auxiliary space), ranging from 1, ..., χ.

The bond dimension χ is of the order of expSA
⇒ for 2d gapped phases, it grows exponentially with L.
An exponential improvement over the exp(surface) of ED...



Starting from a model wavefunction given by a CFT correlator

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

and expanding V (z) =
∑

n V−nz
n, one finds (up to orbital normalization)

c(m1,··· ,mn) = 〈u| Ob.c.
1√
mn!

Vmn
−n · · ·

1√
m2!

Vm2
−2

1√
m1!

Vm1
−1 |v〉

This is a site/orbital dependent MPS

c(m1,··· ,mn) = 〈u| Ob.c.B
[mn](n) · · ·B [m2](2)B [m1](1) |v〉

with matrices at site/orbital j (including orbital normalization)

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m



Translation invariant MPS

A relation of the form B [m](j) = U−1B [m](j − 1)U yields

B [m](j) = U−jB [m](0)U j

and then

B [mn](n) · · ·B [m1](1) = U−n × B [mn](0)U · · ·B [m1](0)U

This is a translation invariant MPS, with matrices

A[m] = B [m](0)U



Translation invariant MPS on the cylinder

Site independant MPS

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m ⇒ A[m] =

1√
m!

(V0)m U

where U is the operator is (Zaletel and Mong (2012))

U = e−
2π
L
H−i
√
νϕ0

where

ϕ0 is the bosonic zero mode (e−i
√
νϕ0 shifts the electric charge by ν)

H is the CFT cylinder Hamiltonian : H = 2π
L L0

V0 is the zero mode of V (z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/

Extension to spinfull FQH : V. Crépel et al., PRB 97, 165136 (2018)



Truncation of the auxiliary CFT basis

χ is infinite → a truncation scheme is required.

The natural cut-off is the total conformal dimension → Pmax.

Truncation over the momentum in the OES.

In finite size, the truncated MPS becomes exact for Pmax large enough.

DMRG : cut-off in ξ (remove
the smallest weight of ρA).

MPS : cut-off in momentum.

Morally equivalent as long as the
ES mimics the chiral edge mode
spectrum (linear dispersion).
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Building a model state for the Halperin/Laughlin interface



Let’s look at the following interface

We consider the (bosonic) case interfacing the Halperin (221) and the
Laughlin ν = 1/2 phases.

Halperin (221)

Spinful, SU(2) symmetric,
ν↑ = ν↓ = 1/3.

e/3 excitations.

Two U(1) chiral edge modes
(charge and spin).

Laughlin ν = 1/2

Spinless, ν↑ = 0, ν↓ = 1/2.

e/2 excitations.

One U(1) chiral edge mode
(charge).



A microscopic model

Hint =

∫
d2~r

 ∑
σ,σ′=↑,↓

: ρσ(~r)ρσ′(~r) :

+ µ↑(~r)ρ↑(~r)

Use the chemical potential µ↑(~r) to polarize half of the system.

Laughlin ν = 1/2 is the densest polarized zero energy state.

Halperin (221) is the densest unpolarized zero energy state.

The two quantum liquids are sewed together by the interaction.

What shall we observe at the interface ? A single gapless mode described
by a free chiral boson (Haldane, PRL 94).



MPS and variational Ansatz

We know the exact MPS for Halperin B [n] and Laughlin A[n].

Brutal gluing : 〈αL| · · ·B [m−2]B [m−1]A[m0]A[m1] · · · |αR〉

Does B [m−1]A[m0] make any sense?

Yes : conformal embedding !

A careful choice for the electron, bg charge
operators.



Density

Translation invariance along the cylinder perimeter.

We recover the spin up and down densities in the bulk both on the
Halperin and Laughlin side.

Finite size effects (with respect to L) quickly vanish.

Width of interface ' 5lB



Topological Entanglement Entropy

We extract the TEE γ from the derivative SA − L∂LSA = −γ.

Good agreement with the predicted values deep in the bulks (-0.549
and -0.347).



Topological Entanglement Entropy

Up to a small oscillations (finite size effects more important for
subleading terms), a rather smooth transition between the two bulk
TEE.

No sign of the gapless mode (as recently predicted by Santos et al.
arXiv:1803.04418).



Area law at the transition

Does we still satisfy the area law at the interface?

Yes (but hard to spot any deviation with such a limited range).



Characterizing the interface



Extracting c : Levin-Wen cut

α(x1)`+ α(x2)(L− `) + 2

∫ x2

x1

α(u)du︸ ︷︷ ︸
Area Law

+
c

6
log

[
sin

(
π`

L

)]
︸ ︷︷ ︸

Critical Mode

+K (w)

K (w) contains corrections to the area law, corner
contributions,...

Using a Levin-Wen cut to focus on the critical
contribution.

SA(`,w) = 2
c

6
log

[
sin

(
π`

L

)]
+ f (w)

To get rid of f (w) (including the TEE), we
compute SA(`,w)− SA(L/2,w)



Extracting c : Levin-Wen cut

Fitted central charge c = 0.987(1).



What about the bulk?



Compactification radius, fractional charge

Central charge is only part of the information.

Mutual information → full partition function of the CFT but hard to
evaluate.

Compactification radius ↔ charge of the elementary edge excitation.

Directly measure the charge along the edge.

Play with the MPS boundary conditions.



Compactification radius, fractional charge

Excitations with a e/6 charge (e/6 = e/2− e/3).
Edge = compact boson with radius R =

√
6.



Is it a good variational wavefunction?

It has all the features that we expect but does it capture the
microscopic model low energy properties?

Overlap with ED : 4 ↑ +9 ↓ particles, 21 orbitals → 0.998 (Hilbert
space dim ' 2.2× 108).

ED with 15 orbitals.

MPO L = 12.



Fermions : Laughlin ν = 1/3 / Halperin (332)

No conceptual difference with the bosonic example.

Transition from Laughlin ν = 1/3 to Halperin (332) at ν = 2/5.

Experimental relevance : graphene using the valley degree of freedom
(spontaneous polarization at ν = 1/3).



Conclusion

A variational ansatz to describe the interface between the Halperin and
the Laughlin liquids.

Microscopic characterization of the interface gapless mode (c and R).

This scheme can be extended to

any case where a MPS/PEPS/TN description is known on both sides.
other sewing approach (e.g. superconductor).
a more generic approach ?


