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Outline of the talk

Motivation

Review of the Path-integral Monte Carlo (PIMC)

The problem : PIMC in the absence of time-reversal symmetry

Results:

1 The free density matrix on the torus in a magnetic field
2 The modification of sampling
3 Case study: rotating Yukawa gases

Outlook: towards Coulomb systems
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Motivation

Fractional quantum Hall effect, also rotating BEC: proliferation of
theories, but few real tests

Experiments give partial information: gaps, transitions driven
by Zeeman energy or valley splitting, perhaps fractional charge

Numerical checks:

1 Exact diagonalization: unbiased, limited for small systems
2 DMRG with similar size limitations
3 Monte Carlo evaluation of trial wave functions (VMC, DMC)

Goal: add a new method to the repertoire

T. Haidekker Galambos, and C. Tőke
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The path-integral Monte Carlo method

Path-integral Monte Carlo (PIMC): performing an
imaginary-time path integral by MC sampling
(Metropolis-Hastings algorithm).

Must interpret path amplitudes as probability densities.

Very effective for interacting Bose systems: liquid 4He, Ne,
H2, votrices in superconductors, excitons, cold atoms, etc.

With node-fixing ansatz, useful for fermions: electrons, e-p
plasma, 3He, etc.

In the presence of a magnetic field, phase-fixing is mentioned
in the literature, but rarely applied.

How far can we get by phase fixing? Do we obtain an
efficient, universal method?

T. Haidekker Galambos, and C. Tőke
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Path-integral Monte Carlo simulation of systems in a magnetic field



Outline Introduction Density matrix on the torus Sampling Case studies Summary

Path-integrals and Monte Carlo

1 Feynmann: probability amplitudes by summing all classical
paths that connect the initial state to a final state:

Interference of complex amplitudes; not amenable to numerics.

2 Quantum statistical mechanics. Density matrix:

〈R(0)| e−Hβ |R(β)〉 , β =
1

kBT
, R ≡ (r1, r2, . . . , rN).

Thermodynamical properties and correlation functions follow
via Z(β) =

∫
dR 〈R| e−Hβ |R〉 ≥ 0.

T. Haidekker Galambos, and C. Tőke
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Path-integral Monte Carlo, details

Density matrix (Euclidean, imaginary-time propagator):

ρ(R,R ′;β) =
∑
n

e−βεnΨn(R)Ψ∗n(R ′).

Apply the convolution identity interatively,

ρ(R,R ′;β1 + β2) =

∫
dR ′′ρ(R,R ′′;β1)ρ(R ′′,R ′;β2)

ρ(R,R ′;β) =

∫
dR1 · · · dRM−1 ρ(R,R1; τ) . . . ρ(RM−1,R

′; τ).

Close path by R = R ′ ≡ RM , integrate over RM ,

Z(β) =

∫
dR1 · · · dRM ρ(RM ,R1; τ) . . . ρ(RM−1,RM ; τ).

τ � β, higher temperature!

T. Haidekker Galambos, and C. Tőke
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PIMC, approximation to high temperature density matrix

Trotter-Suzuki (spectrum bounded from below):

e−τ(T +V) = e−τT e−τV + O(τ2)

The “primitive approximation to the action.”

ρ(Ri ,Ri+1; τ) = 〈Ri | e−τT e−τV |Ri+1〉 =

1

(4πλτ)dN/2
exp

(
−(Ri − Ri+1)2

4λτ

)
e−τV (Ri+1)

Kinetic energy ⇒ springs between neighboring slices;
Interaction: potential each slice;
Partition function: closed (ring) polymer.

Higher approximations necessary for hard potentials
(Coulomb, Lennard-Jones, interatomic). Kinetic and potential
contributions no longer separate.

T. Haidekker Galambos, and C. Tőke
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Path-integral Monte Carlo, estimators

Sample the paths, and collect estimators for its derivatives, e.g.,

Energy (different estimators)

Density

Pair-correlation function

Specific heat

Pressure

Single-particle density matrix

Momentum distribution

Condensate fraction for bosons, ...

T. Haidekker Galambos, and C. Tőke
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Path-integral Monte Carlo, node fixing

For fermions, ρ(Rm,Rm−1; τ)
can also be negative; the
product of N density matrices
cannot be a probability density.

Estimators sum large positive
and negative contributions - sign
problem!

Node fixing: sample
|ρ(RM ,R1; τ)| . . . |ρ(RM−1,RM ; τ)|,
but restrict random walk to the
inside of a nodal pocket of some
assumed ρT (R,R ′;β).

The method becomes
variational.

Energy of the normal state of
3He. Ceperley, PRL 69, 331
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Path-integral Monte Carlo, phase fixing

In an external magnetic field, ρ(Rm,Rm−1; τ) is complex;
same problem.

Phase fixing: sample

|ρ(RM ,R1; τ)||ρ(R2,R3; τ)| . . . |ρ(RM−1,RM ; τ)|,

But use the phase of some assumed
ρT (R,R ′;β) = |ρT (R,R ′;β)|e iφT (R,R′;β). This produces an
effective potential

Veff = λ
(
∇RφT (R,R ′, τ)− e

~
A(R)

)2
.

Exists only as a repeated comment in the literature.

T. Haidekker Galambos, and C. Tőke
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I. The torus in an external magnetic field

(0,0)
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2
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1

x

y

L1(1+τ)/2

L1(1-τ)/2-L1(1+τ)/2

-L1(1-τ)/2

θ

(a)

Must be pierced by integer number of flux quanta

Nφ =
|L1 × L2|

2π`2
=

L1L2 sin θ

2π`2
,

so that magnetic translations by L1 and L2 commute.
Twisted periodic boundary conditions:

t(L1,2)ψ(r) = e iφ1,2ψ(r).

T. Haidekker Galambos, and C. Tőke
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Density matrix (Euclidean propagator) on the torus

ρPBC(r, r′;β) =
1

Nφ
ρopen(r, r′;β)

Nφ−1∑
m=0

{
ϑ

[
0
am

](
z1

∣∣∣τ1

)
ϑ

[
0

2b′m

]
(z2|τ2)+

+(−1)kϑ

[
0

am + 1
2

](
z1

∣∣∣τ1

)
ϑ

[
1
2

2b′m

]
(z2|τ2)

}
,

ρopen(r, r′;β) = 1
2π`2

√
u

1−u exp

(
− 1+u

1−u
|r−r′|2

4`2 + i(x′−x)(y+y ′)
2`2

)
, u = e−β~ωc ,

ϑ

[
a
b

]
(z |τ) =

∑
n e

iπτ(n+a)2+2i(n+a)(z+bπ),

τ1 = i
π

(
L1

2`Nφ

)2
1+u
1−u , z1 = L1

4`2Nφ

(
y + y ′ + i(x ′ − x) 1+u

1−u

)
,

τ2 = iπ
(

2`Nφ

L1

)2
1+u
1−u , z2 =

Nφπ
L1

(
x + x ′ + i(y − y ′) 1+u

1−u

)
,

am = φ1

2πNφ
+ m

Nφ
, bm = − φ2

2π −
Nφ<τ

2 , and b′m = bm + Nφam<τ .
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Single-particle propagation on the torus
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Evolution of |ρPBC(r, r′;β)|.
We set Nφ = 6, L2/L1 = 1.17, θ ≈ 55◦, φ1 = φ2 = 0, and r′ = 0.
The panels correspond to β~ωc = 0.3, 0.7, 1.1, and 5, respectively.
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Zeros of the density matrix on the torus
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Zeros for β~ωc = 200, φ1 = φ2 = 0 and r′ = 0. (a) generic, Nφ = 6,

L2/L1 = 1.13 and θ ≈ 75◦; (b) square, Nφ = 7; (c) generic, Nφ = 11,

L2/L1 = 1.19 and θ ≈ 72◦; (d) hexagonal, Nφ = 12.
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Path-integral Monte Carlo simulation of systems in a magnetic field



Outline Introduction Density matrix on the torus Sampling Case studies Summary

Zeros of the density matrix on the torus, twist
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The trajectories of the zeros as we tune (a) φ1 and (b) φ2

between 0 and 2π. We set β~ωc = 200, r′ = 0, Nφ = 2,
L2/L1 = 1.19 and θ ≈ 56◦.

A single particle will never spread out completely on the torus
for B 6= 0.
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II. Sampling paths, B = 0

Select m, move Rm, use Metropolis
rejection rule—bad idea.

For B = 0, bisection. The Levy
construction for a Brownian bridge

Valid because

p(Ri ) =
ρ0(Ri−s ,Ri ; sτ)ρ0(Ri ,Ri+s ; sτ)

ρ0(Ri−s ,Ri+s ; 2sτ)
;

is a Gaussian, variance sτ . Easy to
sample, do it recursively.

Acceptance ratio = 1 for free particles.

Generalization for PBC possible.

Apply e−U either at the
last level or
intermediate levels.

T. Haidekker Galambos, and C. Tőke
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Sampling paths, B 6= 0

If B 6= 0, we sample by |ρ(R,R ′; τ)|, but

|ρopen(ri−s , ri ; sτ)||ρopen(ri , ri+s ; sτ)|
|ρopen(ri−s , ri+s ; 2sτ)|

is not a normalized probability density.

Under periodic boundary conditions (torus),

|ρPBC(ri−s , ri ; sτ)||ρPBC(ri , ri+s ; sτ)|
|ρPBC(ri−s , ri+s ; 2sτ)|

is not Gaussian, difficult to sample.

Even free particles are difficult to sample.

T. Haidekker Galambos, and C. Tőke
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Sampling paths for periodic BC, B 6= 0, single slice

a priori sampling PDF T (z ′m|zm−1, zm+1): four Gaussians at

Z0 =
zm−1 + zm+1

2
, Z1 =

zm−1 + zm+1 + L1

2
,

Z2 =
zm−1 + zm+1 + L1τ

2
, Z3 =

zm−1 + zm+1 + L1(1 + τ)

2
.

The height of the peaks is proportional to

αi =
|ρPBC(zm−1,Zi ; τ)||ρPBC(Zi , zm+1; τ)|

|ρPBC(zm−1, zm+1; 2τ)|
.

Choose peak i with probability pi = αi/(
∑3

j=0 αj). Sample

Gaussian with variance 1−u
1+u `

2 < λτ with u = e−~ωcτ .

Acceptance probability

|ρPBC(zm−1, z
′
m; τ)||ρPBC(z ′m, zm+1; τ)|

|ρPBC(zm−1, zm; τ)||ρPBC(zm, zm+1; τ)|
T (zm|zm−1, zm+1)

T (z ′m|zm−1, zm+1)
.

T. Haidekker Galambos, and C. Tőke

Path-integral Monte Carlo simulation of systems in a magnetic field



Outline Introduction Density matrix on the torus Sampling Case studies Summary

Sampling paths for periodic BC, B 6= 0, multi-slice
1 Rebuild path between slice L and R = L + 2l recursively

Sample R(R+L)/2 from four Gaussians, variance 1−u1

1+u1
`2, where

u1 = e−~ωcτ1 and τ1 = 2l−1τ .
Sample RL+2l−2 and RR−2l−2 from four Gaussians, variance
1−u2

1+u2
`2, where u2 = e−~ωcτ2 and τ1 = 2l−2τ .

Etc.

2 During this construction, store

P1 =
T (zL+1, . . . zR−1|zL, zR)

T (z ′L+1, . . . z
′
R−1|zL, zR)

3 Finally, calculate

P2 =

∏R
m=L+1 |ρ(z ′m−1, z

′
m; τ)|∏R

m=L+1 |ρ(zm−1, zm; τ)|
.

4 Accept new path with probability A = P1P2× ratio of e−τVeff .

T. Haidekker Galambos, and C. Tőke
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Sampling paths for periodic BC, B 6= 0, multi-slice

Acceptance ratio for a single particle, rectangular torus, Nφ = 2
flux quanta, β~ωc = 2, and 8 ≤ M ≤ 256.

T. Haidekker Galambos, and C. Tőke
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III. Rotating Yukawa bosons: the model

Rotating gas in co-rotating frame

H = − ~2

2m

N∑
i=1

(
∇i −

im

~
Ω× r

)2

+ ε
∑
i<j

K0

( rij
a

)
,

parameters ε and a.

Coriolis-force ⇐⇒ magnetic field; parameters connected as

ωc = 2Ω and ` =

√
~

2mΩ
.

K0(r) modified Bessel: short-range, soft-core interaction. Log
singularity at r → 0, exponential decay as r →∞.

β∗ = β~ωc , ρ∗ = ρa2, Λ =
√

~2

2ma2ε
, κ = a

` = a
√

2mΩ
~ .

T. Haidekker Galambos, and C. Tőke
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Case study: Yukawa bosons in cold atomic systems
Petrov et al. PRL 99, 130407: Fermi/Fermi mixture of very different
masses M and m in 2D trap: Bose bound states with K0(r) interaction,
apart from a nonuniversal short range

Phase boundary (blue): reentrance at constant M/m possible

(Similar interaction for Abrikosov vortices in Type-II SC.)

T. Haidekker Galambos, and C. Tőke
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Case study: phase fixing

For fermions,

ρF (R,R ′;β) = Det(ρPBC(ri , r
′
j ;β)).

For bosons,

ρB(R,R ′;β) = Perm(ρPBC(ri , r
′
j ;β)),

Perm stands for the permanent.

For distinguishable particles,

ρD(R,R ′;β) =
N∏
i=1

ρPBC(ri , r
′
i ;β).

Only qualitative predictions are expected.

B = 0: Margo and Ceperley, PRB 48, 411; Nordborg and
Blatter, PRL 79, 1925.
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Pair correlation for bosons
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N = 12 bosons, ρa2 = 0.02, Nφ = 6 flux quanta, and Λ = 0.035, 0.04,

and 0.045. Differences gΛ=0.04 − gΛ=0.035 and gΛ=0.045 − gΛ=0.04.

Decreasing crystalline correlation as Λ is increased.
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Pair correlation for spinless fermions
(a)
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N = 16
fermions,
ρa2 = 0.02,
Nφ = 8 flux
quanta.
Λ = 0.03,
0.035, 0.04
(⇑);

β = 0.4, 0.5,

0.6 (⇒).
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Density dependence, spinless fermions

The first peak of the pair-correlation function for N = 12 fermions
at β∗ = 0.5, Nφ = 6, for various Λ parameter values vs. density ρa2.

Crystalline order exists only for a limited range of densities.
T. Haidekker Galambos, and C. Tőke
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CDW vs. quantum Hall liquid, spinless fermions

The first peak of the pair-correlation function for N = 16 fermions
at Nφ = 8, ρa2 = 0.02, as a function of the inverse temperature, for
Λ-values with CDW at intermediate temperatures.

At low enough temperature, CDW starts to disappear (?)

T. Haidekker Galambos, and C. Tőke
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Ultimate goal: Coulomb interacting systems

Primitive approximation is not valid — cumulant
action elaborated by Tamás.

Feymann-Kac + cumulant approximation:

e−U(R,R′;τ) =

〈
exp

(
−
∫ τ

0

V (R(t))dt

)〉
RW R′→R

≈ exp

〈
−
∫ τ

0

V (R(t))dt

〉
RW R′→R

.

Ignore the intricacies of the torus for a while:
investigate quantum dots.

Zhitenev et al., PRL 79, 2308 →

Shell structure for small coupling, rotating electron
molecules for large coupling (Landman et al., Rep.
Prog. Phys. 70, 2067)

T. Haidekker Galambos, and C. Tőke
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Quantum dots: phase fixing to UHF

ω =
√
ω2

0 + ω2
c/4,

` =
√
~/mω,

λ = e2

4πε`

/
~ω.

N = 3, fully polarized, ωc/ω = 0.5.

Phase fixed to unrestricted Hartree-Fock, either to ground state

ΨUHF
0 (R)ΨUHF∗

0(R ′), or to
∑

n e
−βεnΨUHF

n (R)ΨUHF∗
n(R ′).

T. Haidekker Galambos, and C. Tőke
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Quantum dots: phase fixing to UHF ground state
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Radial density distribution for N = 6 (left) and N = 7 (right).
ωc/ω = 0.8, λ = 6, fully polarized.
For N = 6, the 6-ring predicted by UHF is unstable to (5,1)
configuration. For N = 7, only quantitative improvement.
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PIMC in magnetic field under (twisted) periodic boundary
condition is feasible

Using Coulomb interaction is a magnetic field is feasible

But we still have to bring the two together..

T. Haidekker Galambos, and C. Tőke
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Thank you for your attention!

T. Haidekker Galambos, and C. Tőke
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