Outline		Density matrix on the torus		Case studies	
	Path_integra	I Monte Carlo s	imulation (of systems	
	i atti integra	i Monte Carlo 5		or systems	

in a magnetic field

Tamás Haidekker Galambos ^{1,2} Csaba Tőke¹

¹Institute of Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary

²Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

June 14, 2018

Supporters: HunQuTech, Hungarian Research Funds Phys. Rev. E 97, 022140 (2018) + ongoing work

T. Haidekker Galambos, and C. Tőke

Outline of the talk

- Motivation
- Review of the Path-integral Monte Carlo (PIMC)
- The problem : PIMC in the absence of time-reversal symmetry

Results:

1 The free density matrix on the torus in a magnetic field

< 17 ▶

- 2 The modification of sampling
- 3 Case study: rotating Yukawa gases
- Outlook: towards Coulomb systems

Motivation

Fractional quantum Hall effect, also rotating BEC: proliferation of theories, but few real tests

- Experiments give partial information: gaps, transitions driven by Zeeman energy or valley splitting, perhaps fractional charge
- Numerical checks:
 - **1** Exact diagonalization: unbiased, limited for small systems
 - **2** DMRG with similar size limitations
 - **3** Monte Carlo evaluation of trial wave functions (VMC, DMC)

A (1) > A (1) > A

Goal: add a new method to the repertoire

The path-integral Monte Carlo method

- Path-integral Monte Carlo (PIMC): performing an imaginary-time path integral by MC sampling (Metropolis-Hastings algorithm).
- Must interpret path amplitudes as probability densities.
- Very effective for interacting Bose systems: liquid ⁴He, Ne, H₂, votrices in superconductors, excitons, cold atoms, etc.
- With **node-fixing** ansatz, useful for fermions: electrons, e-p plasma, ³He, etc.

A (10) > A (10) > A

The path-integral Monte Carlo method

- Path-integral Monte Carlo (PIMC): performing an imaginary-time path integral by MC sampling (Metropolis-Hastings algorithm).
- Must interpret path amplitudes as probability densities.
- Very effective for interacting Bose systems: liquid ⁴He, Ne, H₂, votrices in superconductors, excitons, cold atoms, etc.
- With **node-fixing** ansatz, useful for fermions: electrons, e-p plasma, ³He, etc.
- In the presence of a magnetic field, phase-fixing is mentioned in the literature, but rarely applied.

イロト イポト イヨト イヨト

How far can we get by phase fixing? Do we obtain an efficient, universal method?

Path-integrals and Monte Carlo

Feynmann: probability amplitudes by summing all classical paths that connect the initial state to a final state:

Interference of complex amplitudes; not amenable to numerics.

2 Quantum statistical mechanics. Density matrix:

$$\langle R(0)|e^{-\mathcal{H}\beta}|R(\beta)\rangle, \quad \beta=\frac{1}{k_BT}, \quad R\equiv (\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N).$$

Thermodynamical properties and correlation functions follow via $\mathcal{Z}(\beta) = \int dR \langle R | e^{-\mathcal{H}\beta} | R \rangle \ge 0.$

イロト イポト イヨト イヨト

Path-integral Monte Carlo, details

Density matrix (Euclidean, imaginary-time propagator):

$$\rho(R, R'; \beta) = \sum_{n} e^{-\beta \epsilon_n} \Psi_n(R) \Psi_n^*(R').$$

Apply the convolution identity interatively,

$$\rho(R, R'; \beta_1 + \beta_2) = \int dR'' \rho(R, R''; \beta_1) \rho(R'', R'; \beta_2)$$

$$\rho(R, R'; \beta) = \int dR_1 \cdots dR_{M-1} \rho(R, R_1; \tau) \cdots \rho(R_{M-1}, R'; \tau).$$

Close path by $R = R' \equiv R_M$, integrate over R_M ,

$$\mathcal{Z}(\beta) = \int dR_1 \cdots dR_M \ \rho(R_M, R_1; \tau) \dots \rho(R_{M-1}, R_M; \tau).$$

(日) (同) (三) (

• $\tau \ll \beta$, higher temperature!

T. Haidekker Galambos, and C. Tőke

Outline	Introduction	Density matrix on the torus	Case studies	

PIMC, approximation to high temperature density matrix

Trotter-Suzuki (spectrum bounded from below):

$$e^{- au(\mathcal{T}+\mathcal{V})}=e^{- au\mathcal{T}}e^{- au\mathcal{V}}+O(au^2)$$

The "primitive approximation to the action."

$$\rho(R_i, R_{i+1}; \tau) = \langle R_i | e^{-\tau \mathcal{T}} e^{-\tau \mathcal{V}} | R_{i+1} \rangle = \frac{1}{(4\pi\lambda\tau)^{dN/2}} \exp\left(-\frac{(R_i - R_{i+1})^2}{4\lambda\tau}\right) e^{-\tau V(R_{i+1})}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

T. Haidekker Galambos, and C. Tőke

Outline	Introduction	Density matrix on the torus	Case studies	

PIMC, approximation to high temperature density matrix

Trotter-Suzuki (spectrum bounded from below):

$$e^{- au(\mathcal{T}+\mathcal{V})}=e^{- au\mathcal{T}}e^{- au\mathcal{V}}+O(au^2)$$

The "primitive approximation to the action."

$$\rho(R_i, R_{i+1}; \tau) = \langle R_i | e^{-\tau \mathcal{T}} e^{-\tau \mathcal{V}} | R_{i+1} \rangle = \frac{1}{(4\pi\lambda\tau)^{dN/2}} \exp\left(-\frac{(R_i - R_{i+1})^2}{4\lambda\tau}\right) e^{-\tau \mathcal{V}(R_{i+1})}$$

- 4 同 2 4 日 2 4 日 2

3

■ Kinetic energy ⇒ springs between neighboring slices; Interaction: potential each slice; Partition function: closed (ring) polymer.

T. Haidekker Galambos, and C. Tőke

PIMC, approximation to high temperature density matrix

Trotter-Suzuki (spectrum bounded from below):

$$e^{- au(\mathcal{T}+\mathcal{V})}=e^{- au\mathcal{T}}e^{- au\mathcal{V}}+O(au^2)$$

The "primitive approximation to the action."

$$\rho(R_i, R_{i+1}; \tau) = \langle R_i | e^{-\tau \mathcal{T}} e^{-\tau \mathcal{V}} | R_{i+1} \rangle = \frac{1}{(4\pi\lambda\tau)^{dN/2}} \exp\left(-\frac{(R_i - R_{i+1})^2}{4\lambda\tau}\right) e^{-\tau \mathcal{V}(R_{i+1})}$$

- Kinetic energy ⇒ springs between neighboring slices; Interaction: potential each slice; Partition function: closed (ring) polymer.
- Higher approximations necessary for hard potentials (Coulomb, Lennard-Jones, interatomic). Kinetic and potential contributions no longer separate.

Path-integral Monte Carlo, estimators

Sample the paths, and collect estimators for its derivatives, e.g.,

A (1) > A (1) > A

 $\exists \rightarrow$

- Energy (different estimators)
- Density
- Pair-correlation function
- Specific heat
- Pressure
- Single-particle density matrix
- Momentum distribution
- Condensate fraction for bosons, ...

A (1) > (1) > (1)

Path-integral Monte Carlo, node fixing

- For fermions, ρ(R_m, R_{m-1}; τ) can also be negative; the product of N density matrices cannot be a probability density.
- Estimators sum large positive and negative contributions - sign problem!

Path-integral Monte Carlo, node fixing

- For fermions, ρ(R_m, R_{m-1}; τ) can also be negative; the product of N density matrices cannot be a probability density.
- Estimators sum large positive and negative contributions - sign problem!
- Node fixing: sample $|\rho(R_M, R_1; \tau)| \dots |\rho(R_{M-1}, R_M; \tau)|,$ but restrict random walk to the inside of a nodal pocket of some assumed $\rho_T(R, R'; \beta).$
- The method becomes variational.

T. Haidekker Galambos, and C. Tőke

Path-integral Monte Carlo simulation of systems in a magnetic field

 Energy of the normal state of ³He. Ceperley, PRL 69, 331

A (1) > A (1) > A

Path-integral Monte Carlo, phase fixing

- In an external magnetic field, ρ(R_m, R_{m-1}; τ) is complex; same problem.
- Phase fixing: sample

$$|\rho(R_M, R_1; \tau)||\rho(R_2, R_3; \tau)| \dots |\rho(R_{M-1}, R_M; \tau)|,$$

But use the phase of some assumed $\rho_T(R, R'; \beta) = |\rho_T(R, R'; \beta)| e^{i\phi_T(R, R'; \beta)}$. This produces an effective potential

$$V_{\text{eff}} = \lambda \left(\nabla_R \phi_T(R, R', \tau) - \frac{e}{\hbar} A(R) \right)^2.$$

(4 同) (4 日) (4 日)

Exists only as a repeated comment in the literature.

T. Haidekker Galambos, and C. Tőke

I. The torus in an external magnetic field

Must be pierced by integer number of flux quanta

$$N_{\phi} = \frac{|\mathbf{L}_1 \times \mathbf{L}_2|}{2\pi\ell^2} = \frac{L_1 L_2 \sin\theta}{2\pi\ell^2}$$

so that magnetic translations by L_1 and L_2 commute.

Twisted periodic boundary conditions:

$$t(\mathbf{L}_{1,2})\psi(\mathbf{r}) = e^{i\phi_{1,2}}\psi(\mathbf{r}).$$

T. Haidekker Galambos, and C. Tőke

Density matrix (Euclidean propagator) on the torus

$$\rho^{\mathsf{PBC}}(\mathbf{r},\mathbf{r}';\beta) = \frac{1}{N_{\phi}}\rho^{\mathsf{open}}(\mathbf{r},\mathbf{r}';\beta) \sum_{m=0}^{N_{\phi}-1} \left\{ \vartheta \begin{bmatrix} 0\\a_m \end{bmatrix} \left(z_1 \middle| \tau_1 \right) \vartheta \begin{bmatrix} 0\\2b'_m \end{bmatrix} \left(z_2 \middle| \tau_2 \right) + \left(-1\right)^k \vartheta \begin{bmatrix} 0\\a_m + \frac{1}{2} \end{bmatrix} \left(z_1 \middle| \tau_1 \right) \vartheta \begin{bmatrix} \frac{1}{2}\\2b'_m \end{bmatrix} \left(z_2 \middle| \tau_2 \right) \right\},$$

$$\begin{split} \rho^{\text{open}}(\mathbf{r}, \mathbf{r}'; \beta) &= \frac{1}{2\pi\ell^2} \frac{\sqrt{u}}{1-u} \exp\left(-\frac{1+u}{1-u} \frac{|\mathbf{r}-\mathbf{r}'|^2}{4\ell^2} + \frac{i(x'-x)(y+y')}{2\ell^2}\right), \ u = e^{-\beta\hbar\omega_c}, \\ \vartheta \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} (z|\tau) &= \sum_n e^{i\pi\tau(n+a)^2 + 2i(n+a)(z+b\pi)}, \\ \tau_1 &= \frac{i}{\pi} \left(\frac{L_1}{2\ell N_\phi}\right)^2 \frac{1+u}{1-u}, \ z_1 &= \frac{L_1}{4\ell^2 N_\phi} \left(y+y'+i(x'-x)\frac{1+u}{1-u}\right), \\ \tau_2 &= i\pi \left(\frac{2\ell N_\phi}{L_1}\right)^2 \frac{1+u}{1-u}, \ z_2 &= \frac{N_\phi\pi}{L_1} \left(x+x'+i(y-y')\frac{1+u}{1-u}\right), \\ \mathbf{a}_m &= \frac{\phi_1}{2\pi N_\phi} + \frac{m}{N_\phi}, \ b_m &= -\frac{\phi_2}{2\pi} - \frac{N_\phi\Re\tau}{2}, \text{ and } b'_m = b_m + N_\phi \mathbf{a}_m \Re\tau. \end{split}$$

T. Haidekker Galambos, and C. Tőke

Evolution of $|\rho^{\text{PBC}}(\mathbf{r}, \mathbf{r}'; \beta)|$. We set $N_{\phi} = 6$, $L_2/L_1 = 1.17$, $\theta \approx 55^{\circ}$, $\phi_1 = \phi_2 = 0$, and $\mathbf{r}' = 0$. The panels correspond to $\beta \hbar \omega_c = 0.3$, 0.7, 1.1, and 5, respectively.

T. Haidekker Galambos, and C. Tőke

Zeros of the density matrix on the torus, twist

- The trajectories of the zeros as we tune (a) φ₁ and (b) φ₂ between 0 and 2π. We set βħω_c = 200, r' = 0, N_φ = 2, L₂/L₁ = 1.19 and θ ≈ 56°.
- A single particle will never spread out completely on the torus for $B \neq 0$.

< 同 > < 三 > < 三 >

T. Haidekker Galambos, and C. Tőke

II. Sampling paths, B = 0

■ Select *m*, move *R_m*, use Metropolis rejection rule—bad idea.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

T. Haidekker Galambos, and C. Tőke

II. Sampling paths, B = 0

- Select *m*, move *R_m*, use Metropolis rejection rule—bad idea.
- For *B* = 0, bisection. The Levy construction for a Brownian bridge
- Valid because

$$p(R_i) = \frac{\rho_0(R_{i-s}, R_i; s\tau)\rho_0(R_i, R_{i+s}; s\tau)}{\rho_0(R_{i-s}, R_{i+s}; 2s\tau)}$$

is a Gaussian, variance $s\tau$. Easy to sample, do it recursively.

- Acceptance ratio = 1 for free particles.
- Generalization for PBC possible.

 Apply e^{-U} either at the last level or intermediate levels.

イロト イポト イヨト イヨト

Sampling paths, $B \neq 0$

• If $B \neq 0$, we sample by $|\rho(R, R'; \tau)|$, but

$$\frac{|\rho^{\text{open}}(\mathbf{r}_{i-s}, \mathbf{r}_i; s\tau)||\rho^{\text{open}}(\mathbf{r}_i, \mathbf{r}_{i+s}; s\tau)|}{|\rho^{\text{open}}(\mathbf{r}_{i-s}, \mathbf{r}_{i+s}; 2s\tau)|}$$

is not a normalized probability density.

Under periodic boundary conditions (torus),

$$\frac{|\rho^{\mathsf{PBC}}(\mathbf{r}_{i-s}, \mathbf{r}_i; s\tau)||\rho^{\mathsf{PBC}}(\mathbf{r}_i, \mathbf{r}_{i+s}; s\tau)|}{|\rho^{\mathsf{PBC}}(\mathbf{r}_{i-s}, \mathbf{r}_{i+s}; 2s\tau)|}$$

イロト イポト イヨト イヨト

is not Gaussian, difficult to sample.

Even free particles are difficult to sample.

Outline	Density matrix on the torus	Sampling	Case studies	

Sampling paths for periodic BC, $B \neq 0$, single slice

• a priori sampling PDF $T(z'_m|z_{m-1}, z_{m+1})$: four Gaussians at

$$Z_0 = \frac{z_{m-1} + z_{m+1}}{2}, \quad Z_1 = \frac{z_{m-1} + z_{m+1} + L_1}{2},$$
$$Z_2 = \frac{z_{m-1} + z_{m+1} + L_1\tau}{2}, \quad Z_3 = \frac{z_{m-1} + z_{m+1} + L_1(1+\tau)}{2}.$$

The height of the peaks is proportional to

$$\alpha_{i} = \frac{|\rho^{\mathsf{PBC}}(z_{m-1}, Z_{i}; \tau)||\rho^{\mathsf{PBC}}(Z_{i}, z_{m+1}; \tau)|}{|\rho^{\mathsf{PBC}}(z_{m-1}, z_{m+1}; 2\tau)|}.$$

- Choose peak *i* with probability $p_i = \alpha_i / (\sum_{j=0}^3 \alpha_j)$. Sample Gaussian with variance $\frac{1-u}{1+u}\ell^2 < \lambda \tau$ with $u = e^{-\hbar\omega_c \tau}$.
- Acceptance probability

$$\frac{|\rho^{\mathsf{PBC}}(z_{m-1}, z'_m; \tau)||\rho^{\mathsf{PBC}}(z'_m, z_{m+1}; \tau)|}{|\rho^{\mathsf{PBC}}(z_{m-1}, z_m; \tau)||\rho^{\mathsf{PBC}}(z_m, z_{m+1}; \tau)|} \frac{T(z_m | z_{m-1}, z_{m+1})}{T(z'_m | z_{m-1}, z_{m+1})}.$$

T. Haidekker Galambos, and C. Tőke

Outline		Density matrix on the torus	Sampling	Case studies	
Samp	ling naths	for periodic BC.	$3 \neq 0$ m	ulti-slice	

I Rebuild path between slice L and $R = L + 2^{l}$ recursively

- Sample $R_{(R+L)/2}$ from four Gaussians, variance $\frac{1-u_1}{1+u_1}\ell^2$, where $u_1 = e^{-\hbar\omega_c \tau_1}$ and $\tau_1 = 2^{l-1}\tau$.
- Sample $R_{L+2^{l-2}}$ and $R_{R-2^{l-2}}$ from four Gaussians, variance $\frac{1-u_2}{1+u_2}\ell^2$, where $u_2 = e^{-\hbar\omega_c\tau_2}$ and $\tau_1 = 2^{l-2}\tau$. Etc.

イロト イポト イヨト イヨト

3

Outline		Density matrix on the torus	Sampling	Case studies	
Samp	ling paths	for periodic BC,	B eq 0, m	ulti-slice	
1		h between slice L and			

- Sample $R_{(R+L)/2}$ from four Gaussians, variance $\frac{1-u_1}{1+u_1}\ell^2$, where $u_1 = e^{-\hbar\omega_c\tau_1}$ and $\tau_1 = 2^{l-1}\tau$.
- Sample $R_{L+2^{l-2}}$ and $R_{R-2^{l-2}}$ from four Gaussians, variance $\frac{1-u_2}{1+u_2}\ell^2$, where $u_2 = e^{-\hbar\omega_c\tau_2}$ and $\tau_1 = 2^{l-2}\tau$. • Etc.

2 During this construction, store

$$P_1 = \frac{T(z_{L+1}, \dots, z_{R-1}|z_L, z_R)}{T(z'_{L+1}, \dots, z'_{R-1}|z_L, z_R)}$$

▲ロト ▲圖ト ▲臣ト ▲臣ト 三臣 - のへで

T. Haidekker Galambos, and C. Tőke

Outline		Density matrix on the torus	Sampling	Case studies	
Samp	ling paths	for periodic BC,	B eq 0, m	ulti-slice	
1	Rebuild pat	h between slice L and	$R = L + 2^{l}$	recursively	

- Sample $R_{(R+L)/2}$ from four Gaussians, variance $\frac{1-u_1}{1+u_1}\ell^2$, where $u_1 = e^{-\hbar\omega_c \tau_1}$ and $\tau_1 = 2^{l-1}\tau$.
- Sample $R_{L+2^{l-2}}$ and $R_{R-2^{l-2}}$ from four Gaussians, variance $\frac{1-u_2}{1+u_2}\ell^2$, where $u_2 = e^{-\hbar\omega_c\tau_2}$ and $\tau_1 = 2^{l-2}\tau$. • Etc.
- 2 During this construction, store

$$P_{1} = \frac{T(z_{L+1}, \dots, z_{R-1} | z_{L}, z_{R})}{T(z'_{L+1}, \dots, z'_{R-1} | z_{L}, z_{R})}$$

3 Finally, calculate

$$P_2 = \frac{\prod_{m=L+1}^{R} |\rho(z'_{m-1}, z'_m; \tau)|}{\prod_{m=L+1}^{R} |\rho(z_{m-1}, z_m; \tau)|}$$

4 Accept new path with probability $A = P_1 P_2 \times \text{ratio of } e^{-\tau V_{\text{eff}}}$.

T. Haidekker Galambos, and C. Tőke

Sampling paths for periodic BC, $B \neq 0$, multi-slice

Acceptance ratio for a single particle, rectangular torus, $N_{\phi} = 2$ flux quanta, $\beta \hbar \omega_c = 2$, and $8 \le M \le 256$.

T. Haidekker Galambos, and C. Tőke

III. Rotating Yukawa bosons: the model

Rotating gas in co-rotating frame

$$\mathcal{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \left(\nabla_i - \frac{im}{\hbar} \mathbf{\Omega} \times \mathbf{r} \right)^2 + \epsilon \sum_{i < j} \mathcal{K}_0\left(\frac{r_{ij}}{a}\right),$$

parameters ϵ and a.

$$\omega_c = 2\Omega$$
 and $\ell = \sqrt{rac{\hbar}{2m\Omega}}.$

K₀(r) modified Bessel: short-range, soft-core interaction. Log singularity at r → 0, exponential decay as r → ∞.

T. Haidekker Galambos, and C. Tőke

Petrov *et al.* PRL 99, 130407: Fermi/Fermi mixture of very different masses M and m in 2D trap: Bose bound states with $K_0(r)$ interaction, apart from a nonuniversal short range

Phase boundary (blue): reentrance at constant M/m possible (Similar interaction for Abrikosov vortices in Type-II SC.)

T. Haidekker Galambos, and C. Tőke

Case study: phase fixing

For fermions,

$$\rho_{\mathcal{F}}(\mathcal{R}, \mathcal{R}'; \beta) = \mathsf{Det}(\rho^{\mathsf{PBC}}(\mathbf{r}_i, \mathbf{r}'_j; \beta)).$$

For bosons,

$$\rho_B(R, R'; \beta) = \operatorname{Perm}(\rho^{\mathsf{PBC}}(\mathbf{r}_i, \mathbf{r}'_j; \beta)),$$

Perm stands for the permanent.

For distinguishable particles,

$$\rho_D(R, R'; \beta) = \prod_{i=1}^N \rho^{\mathsf{PBC}}(\mathbf{r}_i, \mathbf{r}'_i; \beta).$$

- Only qualitative predictions are expected.
- B = 0: Margo and Ceperley, PRB 48, 411; Nordborg and Blatter, PRL 79, 1925.

T. Haidekker Galambos, and C. Tőke

Pair correlation for bosons

N = 12 bosons, $\rho a^2 = 0.02$, $N_{\phi} = 6$ flux quanta, and $\Lambda = 0.035$, 0.04, and 0.045. Differences $g_{\Lambda=0.04} - g_{\Lambda=0.035}$ and $g_{\Lambda=0.045} - g_{\Lambda=0.04}$. Decreasing crystalline correlation as Λ is increased.

T. Haidekker Galambos, and C. Tőke

Sampling

Pair correlation for spinless fermions

$$\begin{split} N &= 16 \\ \text{fermions,} \\ \rho a^2 &= 0.02, \\ N_\phi &= 8 \text{ flux} \\ \text{quanta.} \\ \Lambda &= 0.03, \\ 0.035, 0.04 \\ (\Uparrow); \\ \beta &= 0.4, 0.5, \\ 0.6 \; (\Rightarrow). \end{split}$$

T. Haidekker Galambos, and C. Tőke

Density dependence, spinless fermions

- The first peak of the pair-correlation function for N = 12 fermions at β* = 0.5, N_φ = 6, for various Λ parameter values vs. density ρa².

T. Haidekker Galambos, and C. Tőke

Outline

CDW vs. quantum Hall liquid, spinless fermions

• The first peak of the pair-correlation function for N = 16 fermions at $N_{\phi} = 8$, $\rho a^2 = 0.02$, as a function of the inverse temperature, for Λ -values with CDW at intermediate temperatures.

At low enough temperature, CDW starts to disappear (?)

T. Haidekker Galambos, and C. Tőke

Ultimate goal: Coulomb interacting systems

 Primitive approximation is not valid — cumulant action elaborated by Tamás.

Feymann-Kac + cumulant approximation:

$$e^{-U(R,R';\tau)} = \left\langle \exp\left(-\int_0^\tau V(R(t))dt\right) \right\rangle_{\mathrm{RW}\ R' \to R}$$
$$\approx \exp\left\langle -\int_0^\tau V(R(t))dt \right\rangle_{\mathrm{RW}\ R' \to R}.$$

 Ignore the intricacies of the torus for a while: investigate quantum dots.

Zhitenev et al., PRL 79, 2308 \rightarrow

 Shell structure for small coupling, rotating electron molecules for large coupling (Landman *et al.*, Rep. Prog. Phys. 70, 2067)

T. Haidekker Galambos, and C. Tőke

Quantum dots: phase fixing to UHF

Phase fixed to unrestricted Hartree-Fock, either to ground state $\Psi_0^{\text{UHF}}(R)\Psi_0^{\text{UHF}*}(R')$, or to $\sum_n e^{-\beta\epsilon_n}\Psi_n^{\text{UHF}}(R)\Psi_{\alpha}^{\text{UHF}*}(R')$, $\epsilon \in \mathbb{R}$

T. Haidekker Galambos, and C. Tőke

Quantum dots: phase fixing to UHF ground state

Radial density distribution for N = 6 (left) and N = 7 (right). $\omega_c/\omega = 0.8$, $\lambda = 6$, fully polarized. For N = 6, the 6-ring predicted by UHF is unstable to (5,1) configuration. For N = 7, only quantitative improvement.

◆ 同 → → 三 →

T. Haidekker Galambos, and C. Tőke

Outline	Density matrix on the torus	Case studies	Summary

 PIMC in magnetic field under (twisted) periodic boundary condition is feasible

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Using Coulomb interaction is a magnetic field is feasible
- But we still have to bring the two together..

Outline	Density matrix on the torus	Case studies	Summary

Thank you for your attention!

・ロン ・回 と ・ヨン ・ ヨン

2

T. Haidekker Galambos, and C. Tőke